la catégorie des ensembles : premier exemple d’un topos

La théorie des topoi (pour les hellénistes, dont je me piquais de faire partie du temps de mes études) , qui est maintenant le nouveau cadre fondationnel pour les mathématiques (après la théorie des ensembles qui jouait ce rôle dans les années 60) est le plus souvent présentée comme une généralisation ou une « abstraction » de la théorie des ensembles, et la notion de topos est résumée comme :

une catégorie qui se comporte « comme » la catégorie des ensembles

seulement il existe des manières de présenter les choses qui rendent un peu plus justice à la réalité : les topoi n’ont pas été inventés, ou « découverts », par Grothendieck et Lawvere dans le but de généraliser la théorie des ensembles !

Je dirais plutôt quant à moi que si le premier exemple de topos rencontré par l’homo mathematicus est  effectivement celui des ensembles, c’est à cause du fait que le « devenir-esprit » de l’humanité est orienté dans le sens d’un progrès de la conscience, de la nature, caractérisée par la multiplicité, vers l’esprit, caractérisé par l’unité.

Il n’est donc guère étonnant que la théorie des ensembles, qui est la théorie des multiplicités pures, sans structure ni ordre, soit trouvée en premier.

Cette « découverte » se situe d’ailleurs bien tardivement dans l’histoire de la mathématique, elle vient après celle des nombres entiers, puis des autres nombres, et leur manipulation dans les équations et systèmes d’équations, notions indiscutablement plus « concrètes ».

La notion de topos a à voir avec celle de vérité, à travers l’existence dans tout topos d’un objet-vérité (truth -object) Ω.

Agrémentée de ce que l’on appelle un « natural number object » (généralisant les nombres entiers) elle constitue un cadre de formalisation et de théorisation pour l’évolution moderne (toute récente) de la physique, voir :

http://www.blogg.org/blog-69347-billet-physique_et_theorie_des_topoi__physics__topos_and_category_theory_-716975.html

http://mathesis.blogg.org/date-2006-06-09-billet-368403.html

https://meditationesdeprimaphilosophia.wordpress.com/quantum-topos/

après ces éclaircissement partons donc de la catégorie des ensembles, notée le plus souvent Ens (dans les ouvrages français) ou Set (dans les livres en anglais).

http://www.emis.de/journals/BAMV/conten/vol9/jeanyves.pdf

Un ensemble est une catégorie où il n’y a pas de morphismes entre les objets, qui sont les éléments de l’ensemble (en fait, il y a toujours un morphisme, le morphisme identité, souvent identifié avec l’objet).

Prenons un exemple simple : j’ai avec moi une sacoche où il y a, mettons, trois livres; je peux toujours former le concept de l’ensemble de ces trois livres, même s’ils n’ont rien à voir entre eux, même si je ne lis que l’un d’entre eux et que les deux autres appartiennent à quelqu’un d’autre, qui les a oubliés chez moi.

Cet ensemble est donc la collection :

{ A , B , C } où l’on note A, B ,et C les trois livres en question.

si je veux considérer cet ensemble comme une catégorie, je pourrai introduire des morphismes identité sur chacun des trois objets, ou éléments, de cet ensemble:

Id_A : A —-> A   etc…

mais il n’y aura pas de morphismes reliant deux objets différents entre eux.

Maintenant la catégorie des ensembles possède comme objets les ensembles et comme morphismes reliant deux objets, deux ensembles X et Y, les fonctions, ou applications, entre ces ensembles .

Rappelons qu’une fonction f entre deux ensembles X et Y :

f : X ————–> Y

est un procédé qui à tout élément x appartenant à X associe un et un seul  élément  y = f (x) appartenant à l’ensemble Y

Il ne peut pas y avoir deux correspondants, sinon on n’a plus une fonction mais une correspondance (théorie très intéressante elle aussi).

Comme tout ensemble peut être considéré comme une catégorie, la catégorie des ensembles pourra être considérée comme une 2-catégorie. Une fonction entre ensembles sera alors un foncteur entre ces deux ensembles considérés comme catégories.

http://fr.wikipedia.org/wiki/Foncteur

Là encore, il y a deux manières de comprendre l’évolution : soit les foncteurs seront considérés comme des « généralisations » de la notion de fonction, soit les fonctions seront considérées comme la première « rencontre » de nos mathématiques en train de se développer avec une notion bien plus englobante, et qui contient les fonctions comme un cas particulier simple.

L’intérêt de la catégorie des ensembles est que l’on y  rencontre ainsi tous, ou beaucoup  des concepts les plus usuels de la théorie des catégories.

ainsi une application, ou fonction, entre les ensembles X et Y  est dite injective si un élément de Y n’a qu’un seul « prédecesseur » (quand il en a un).

Il ne peut arriver que deux éléments de X soient envoyés sur le même élément de Y.

une application est dite surjective lorsque tout élément de Y a un (ou plusieurs) prédecesseurs.

Une application est dite bijective quand elle est à la fois injective et surjective.

Ces notions sont présentes en théorie des catégories : les fonctions injectives deviennent les monomorphismes, les applications surjectives sont les épimorphismes, et les applications bijectives les isomorphismes.

Mais la nouveauté radicale, qui est la principale caractéristique de la nouvelle théorie, est que ces notions n’ont plus besoin d’être expliquées en recourant aux éléments, mais seulement à des diagrammes.

Attardons nous un peu là dessus, car cela permet de comprendre pas mal de choses.

Un monomorphisme est un morphisme qui est « simplifiable à gauche » :

http://fr.wikipedia.org/wiki/Monomorphisme

Dans le cadre plus général de la théorie des catégories, un monomorphisme (aussi appelé mono) est un morphisme simplifiable à gauche, c’est-à-dire une application f\colon X \to Y telle que

f \circ g_1 = f \circ g_2 \implies g_1 = g_2 pour tout morphisme g_1, g_2 \colon Z \to X.
Monomorphism-01.png

La notion duale est celle d’épimorphisme , qui sont la version catégorique des applications surjectives ensemblistes.

Ici s’introduit la notion de dualité, extrêmement importante : la catégorie duale d’une catégorie C est obtenue en reversant le sens des flèches (morphismes).

À partir d’une catégorie \mathcal C, on peut définir une autre catégorie \mathcal C^{op} (ou \mathcal C ^ o), dite opposée ou duale, en prenant les mêmes objets, mais en inversant le sens des flèches.

Plus précisément : Hom_{\mathcal C^{op}}(A,B)=Hom_{\mathcal C}(B,A), et la composition de deux flèches opposées est l’opposée de leur composition :

f^{op}\circ g^{op}=(g\circ f)^{op}

Il est clair que la catégorie duale de la catégorie duale est la catégorie de départ : (\mathcal C^{op})^{op}=\mathcal C.

Un isomorphisme , version catégorique des bijections ensemblistes, est simplement un morphisme qui possède un inverse :

Dans une catégorie C, un isomorphisme est un morphisme f:A\to B tel qu’il existe un morphisme g:B\to A qui soit « inverse » de f à la fois à gauche (g\circ f=\mathrm{id}_A) et à droite (f\circ g=\mathrm{id}_B).

Il suffit pour cela que f possède d’une part un « inverse à gauche » g et d’autre part un « inverse à droite » h. En effet, on a alors

g=g\circ\mathrm{id}_B=g\circ(f\circ h)=(g\circ f)\circ h=\mathrm{id}_A\circ h=h