la stratégie de Badiou pour démontrer l’inexistence du Tout

Dans « Logiques des mondes » (LDM) , page 119, section 1, Badiou commence sa présentation du « concept de transcendantal » (qui sera pour nous attaché à la notion de topos, comme ce que l’on appelle « objet-vérité » Ω) en démontrant l’inexistence du Tout.

Seulement, fidèle à sa thèse de la théorie des ensembles (pas n’importe laquelle, celle axiomatisée par Zermelo-Fraenkel) comme ontologie, ou doctrine de l’être en tant qu’être, le Tout doit être pour lui la totalité de « ce qu’il y a » , et comme tout ce qu’il y a ce sont les multiples purs, les ensembles, le Tout doit être la totalité des ensembles.

Mais si le Tout doit être, comme ce qui est, ce sont les multiples, le Tout doit être un multiple, un ensemble.

Conclusion : le Tout doit être un ensemble, et il doit être la totalité des ensembles.

Il ne peut donc être que l’ensemble de tous les ensembles, et à ce titre il doit être élément de lui même.

De tels ensembles, qui sont éléments d’eux mêmes, sont appelés par Badiou « multiples réflexifs », et ils ont été considérés de longue date par les mathématiciens comme assez « problématiques », voire dangereux, à tel point que la théorie a jugé bon de créer un axiome, l’axiome de fondation, pour les écarter comme possibilité de pensée.

http://forums.futura-sciences.com/mathematiques-superieur/378117-ensemble-se-contenant-lui-meme.html

http://utilisateur-ianop.blogspot.fr/2008/01/lensemble-vide-est-lment-de-lui-mme.html

d’ailleurs, même en théorie « intuitive » ou « naïve », on a du mal à en trouver : je ne puis proposer que des formulations négatives, comme par exemple l’ensemble des ensembles dont la cardinalité est non bornée, ou supérieure à un nombre entier fini quelconque n.

Mais revenons à l’enchaînement de pensées de Badiou : supposons que le Tout soit, et qu’il soit donc ensemble de tous les ensembles (comme nous y sonnes forcés si nous suivons les thèses de Badiou sur l’ontologie du multiple) alors il y a au moins un ensemble élément de lui même, et il est consistant de dire que de tels ensembles (dits réfelxifs) existent.

Mais il est aussi consistant de dire que des ensembles qui ne sont pas éléments d’eux mêmes existent, et là on en trouve à foison.

Badiou cite comme exemple ces 5 poires qui sont là sur la table devant lui : on peut en former un ensemble, mais il n’a aucune chance d’être une poire, et donc il ne peut être élément de lui même, puisque tous ces éléments sont par construction…des poires !

Badiou poursuit : il est logiquement possible de séparer « tout ce qu’il y a », c’est à dire tous les multiples, en deux catégories : les réflexifs, et les non réflexifs.

Il est donc consistant de former l’idée du multiple de « tous les multiples non réflexifs », que Badiou appelle la Chimère.

Or cette Chimère, est elle réflexive ? elle est un ensemble, l’ensemble de tous les ensembles non réflexifs, mais peut elle être élément d’elle même ?

si elle l’était, cela voudrait dire qu’elle serait un ensemble non réflexif, puisque c’est la définition des éléments de la Chimère !

Conclusion : si la Chimère était réflexive, elle serait non réflexive !

Nous arrivons à une contradiction, une absurdité, donc la chimère ne peut être réflexive…

seulement nous arrivons au même genre de problèmes si nous la supposons non réflexive: car si elle est non réflexive, cela veut dire qu’elle est un ensemble qui n’est pas élément de lui même.

Donc elle appartient à l’ensemble des ensembles non réflexifs.

Or cet ensemble c’est elle même.

Donc elle appartient à elle même, elle est élément d’elle même.

Donc si nous supposons que la chimère est non réflexive, nous aboutissons à la conclusion qu’elle doit être réflexive !

Conclusion :

la Chimère est bien…chimérique, elle n’a pas d’être, elle ne peut être un

ensemble.

Et comme elle suivait de l’hypothèse de l’être du Tout, cette hypothèse, menant à des absurdités, doit être écartée.

Le Tout n’a pas d’être.

Seulement ceci n’est valable que dans le cadre des thèses ensemblistes de Badiou, et même dans ce cadre les mathématiciens ont depuis longtemps eu l’idée d’un axiome d’antifondation et d’ensembles dits « non well-founded », qui passent allègrement par dessus les prétendus interdits de « pensée philosophique » :

http://fr.wikipedia.org/wiki/Axiome_d’anti-fondation

http://plato.stanford.edu/entries/nonwellfounded-set-theory/

mais selon moi le vrai problème est que Badiou ne part pas du véritable point de départ, qui est la dualité entre « élément-être » et « élément-savoir ».

Il parle seulement de l’idée du Tout, non pas du Tout lui même !

un ensemble n’est qu’une idée, et Badiou le reconnaît lui même avec son exemple de l’ensemble des 5 poires : c’est l’idée que nous nous formons de la collection des 5 poires, mais pas les 5 poires elles mêmes en leut être « massif », comme dirait Sartre, là devant nous, sur la table.

Si je suis sur le point de mourir de faim et de soif, ce n’est pas l’ensemble des 5 poires qui va me sauver : ce sont les 5 poires, et tout le monde le sait bien, qu’il soit idéaliste ou pas !

ou encore : c’est le chien qui aboie et qui mord, pas l’idée du chien !

Dans nos conditions d’existence incarnée, il est complètement absurde de vouloir « séparer » être et savoir, matière et esprit.

Mais, ce qui est la vérité éternelle de l’idéalisme, l’esprit possède  une prédominance évidente quand il s’agit de l’âme humaine et de son salut : sans les idées, et leur aboutissement la science, je pourrai cueillir les poires sur l’arbre, comme les anciennes tribus de sauvages , mais il me sera difficile de les faire venir sur ma table, sauf utilisation d’esclaves. Et encore devrai je savoir les faire pousser !

Qu’est ce que le Tout  : tous les étants « du monde extérieur » dont je puis former l’idée, moi ou n’importe qui d’autre, plus toutes les idées d’un étant quelconque ; cela fait du monde , car il y a en plus les idées d’idées (idées d’évènements par exemple).

Bref on comprend qu’il est insensé de vouloir avoir même l’idée d’en former un ensemble, ou une collection.

Le Tout serait en somme l’identité primitive de l’être et du savoir, dont nous avons constaté que la route est « barrée » à la pensée, sauf introduction du mysticisme dans la philosophie.

Le Tout est donc une idée mal formée, inconsistante : pas besoin de Zermelo-Fraenkel ni du paradoxe de Russell pour le comprendre !

Par contre si comme le dit Hegel « seul le vrai est le Tout », et que nous assignons à la philosophie , renommée par nous toposophie , la recherche et l’acheminement de l’âme vers la vérité, alors il devient licite d’envisager le Tout, comme l’Un ou l’Etre, comme limites : c’est là le schéma de pensée « fonctorielle » par lequel nous remplaçons les « arcanes du badiolisme » (pour reprendre ce néologisme, désignant l’école de pensée de Badiou, à son créateur François Laruelle).

Publicités

4 réflexions au sujet de « la stratégie de Badiou pour démontrer l’inexistence du Tout »

  1. Yann Coudert

    Bonjour,
    Aucun ensemble « réel » n’est élément de lui-même, certes.
    E = {A, B, C} n’appartient pas à lui-même.
    Mais : A, B, C = {E} appartient à lui-même ! Il s’agit d’un ensemble « virtuel », comme le sont l’ensemble des ensembles et l’ensemble vide.

    Cordialement,
    Ianop

    1. mathesisuniversalis Auteur de l’article

      Bonjour et merci mais euh…comment dire..
      Je ne comprends pas votre ligne numéro 2 : A,B,C = {E}

      {E} est le singleton de E, c’est a dire l’ensemble dont le seul élément est E

      Donc on a bien : E appartient à {E} par définition

      Mais {E} n’appartient pas a lui même

      L’ensemble vide existe, de par un axiome il me semble, par contre l’ensemble de tous les ensembles est proscrit par la théorie

      Bien à vous

      1. mathesisuniversalis Auteur de l’article

        pas dans la théorie des ensembles ZF en tout cas puisqu’elle accepte l’ensemble vide et proscrit l’ensemble de tous les ensembles…mais c’est une idée intéressante

Les commentaires sont fermés.