La table périodique des n-catégories

J’ai déjà cité ce cours de John Baez, un des plus grands experts mondiaux en théorie des catégories et leur application à la physique:

Lectures on n-categories and cohomology

Il n’est pas question ici de faire le tour, même sommairement, de ce qui apparaît comme un véritable festival d’idées nouvelles, il peut être complété par cet autre de Baez:

An introduction to n-categories

qui explique sommairement au début ce qu’est une n-catégorie.

La table périodique des n-catégories est ici sur le NLAB avec les liens utiles:

http://ncatlab.org/nlab/show/periodic+table

Elle figure aussi dans le premier papier cité plus haut « Lectures on n-categories and cohomology » aux pages:
10 et 11
Elle se présente comme un tableau à double entrée indexée horizontalement par n et verticalement par k
Prenons la première ligne du tableau page 10, pour k=0 et n variant de zéro à l’infini: ce sont les n-catégories « normales » , pour n=0 ce sont les ensembles, n=1 donne les catégories, etc…
A partir de k=1 on obtient des n-catégories dites « dégénérées », la définition générale donnée page 10 est la suivante pour la case (n,k):
les (n,k)-catégories sont des (n+k)-catégories telles qu’il n’y a qu’un seul j-morphisme pour j<k (j strictement inférieur à k)

Ainsi pour n = 0 et k= 1 : j< k veut dire j< 1 donc j=0
Or les 0-morphismes sont les objets, donc il n’y a qu’un seul objet.
C’est la définition catégorique d’un monoïde.

La définition traditionnelle en algèbre moderne d’une structure de monoïde est un peu différente, il est utile de s’attarder un peu sur ce point.

http://fr.m.wikipedia.org/wiki/Monoïde

Cette définition est comme on le voit de type ensembliste, un monoïde est un ensemble muni d’une loi de composition entre les éléments avec un élément neutre pour cette loi.

Dans la définition catégorique les éléments du monoïde de la définition ensembliste deviennent les morphismes, et l’unique objet correspond à l’élément neutre de la définition ensembliste.

Un groupe, structure fondamentale de l’algèbre moderne et de la physique, est un monoïde pour lequel chaque élément possède un inverse pour la loi de composition; dans la définition catégorique cela signifie que tous les morphismes sont des isomorphismes (c.-à-d. Possèdent un inverse).

Une catégorie est un monoïde avec plusieurs objets, on dit aussi que c’est la catégorification de la notion de monoïde.

La catégorification de la structure de groupe est ce que l’on nomme un groupoïde, c’est une catégorie où tous les morphismes sont des isomorphismes.

Il est possible de définir un groupoïde sans faire appel aux catégories, cela a été fait par Brandt en 1926, voir:

http://mathoverflow.net/questions/199849/brandts-definition-of-groupoids-1926

La définition est nettement plus compliquée, mais surtout elle ne permet pas de faire le lien entre les morphismes du groupe considéré catégoriquement et les éléments du groupe considéré de manière ensembliste : c’est une perte absolue d’intelligibilité.

Nous voyons déjà avec cette table périodique et la notion de « catégorification » l’œuvre d’unification en train de fonctionner, nous poursuivrons cette étude dans d’autres articles, en passant aux structures catégoriques supérieures (« higher algèbre ») mais soulignons que cela n’aurait pas été possible si l’on en était resté aux définitions de type ensembliste.

Il arrive, et c’est le cas ici, que la définition crée ou facilite grandement l’intuition et la découverte de nouvelles structures.

Advertisements

Une réflexion au sujet de « La table périodique des n-catégories »

  1. Ping : La table périodique des n-catégories | Henosophia μαθεσις uni√ersalis τοποσοφια MATHESIS οντοποσοφια ενοσοφια

Les commentaires sont fermés.