Survol de la théorie des n-catégories (« Higher category theory »)

Henosophia TOPOSOPHIA μαθεσις uni√ersalis τοποσοφια MATHESIS οντοποσοφια ενοσοφια

Je n’ai pas encore beaucoup avancé dans la théorie des catégories, ni des topoi, mais je commence prochainement à aborder le livre de Jacob Lurie, voir:

https://meditationesdeprimaphilosophia.wordpress.com/2015/06/19/jacob-lurie-continuateur-de-grothendieck/

Ce blog n’est pas un blog de mathématiques, bien qu’il implique de suivre certains travaux de mathématique pure, mais il me semble de toutes façons que c’est une erreur de commencer par la théorie des categories (c’est à dire les 1-catégories), il vaudrait mieux à mon avis commencer directement par le cadre général des n-catégories et des ∞-catégories dont les ensembles qui sont les 0-catégories et les catégories ne sont que des cas particuliers.

https://en.m.wikipedia.org/wiki/Higher_category_theory

http://ncatlab.org/nlab/show/higher+category+theory

« Higher category theory is the generalization of category theory to a context where there are not only morphisms between objects, but generally k-morphisms between (k−1)-morphisms, for all k∈N. »

c’est donc l’etude des « catégories supérieures »: 2-catégories où il y a des 2-morphismes entre les 1-morphismes, etc…en faisant tendre…

View original post 342 mots de plus

Advertisements