Archives du mot-clé adjonction

Le blog du Professeur John Armstrong : « The unapologetic mathematician »

J’ai déjà précisé que les blogs  » Henosophia Toposophia Mathesis universalis » ne doivent pas être considérés comme des blogs de mathématique ou de science ni meme de philosophie, mais cela n’implique de ma part aucune prise de distance ou attitude hautaine envers ces blogs de professionnels des maths, bien au contraire, je les admire pour leur rigueur de pensée ( les mathématiciens et physiciens mathématiciens je veux dire, pas les philosophes car trop souvent la philosophie de nos jours, surtout sur Internet, se perd dans la brume même pas poétique des jeux de langage ou des termes abscons ( ce qui est aussi le cas des mathématiques, mais là les termes sont clairement et rigoureusement définis). 

L’activité de lecture de ces blogs mathématiques est importante du point de vue de ce blog, car c’est là que se noue un contact irremplaçable avec l’activité mathématique réelle et contemporaine, et d’une autre façon qu’avec les travaux parus sur Arxiv ou dans les livres . Nous en avons déjà recensés trois hier, venant s’ajouter au « n-category cafe » que nous connaissions déjà et en épluchant la rubrique « Blogroll »  ou « links » de ces blogs nous en voyons tout un tas d’autres émerger. Il y a un passage dans l’article du blog de Michael Harris « mathematics without apologies » étudié hier sur lequel je voudrais insister aujourd’hui :

https://mathematicswithoutapologies.wordpress.com/2015/05/13/univalent-foundations-no-comment/

« The same questioner continued: “Is anyone willing to bet against” the prediction that computer-verified proofs will be of “widespread use in mathematics” within 25 years? Lurie immediately replied: “I’ll take that!” to which Richard Taylor added “Yes, me too.” Terry Tao thought that some people, at least, would be using working with computer verification at that point. »

Tous les petits génies des maths questionnés relativisent l’importance de l’intervention des ordinateurs ( assistance pour vérifier les démonstrations par exemple) seul Terence Tao admet que ces techniques pourraient jouer un rôle pour aider à la vérification des preuves ; on enregistre un seul cas où l’aide de l’ordinateur s’est révélée cruciale, jusqu’à aujourd’hui : celui de la démonstration du théorème des quatre couleurs:

https://fr.m.wikipedia.org/wiki/Théorème_des_quatre_couleurs

On comprend cette réaction des mathématiciensqui est aussi celle de Roger Penrose: l’unique Sujet à l’œuvre dans la Mathesis, c’est l’Esprit , autrement dit la Raison universelle des esprits, Dieu, qui s’identifie à la liberté et à l’autonomie propre à la conscience humaine et qui est le « plan spirituel » promis au progrès de cette conscience vers la communauté et l’unité des esprits. Or un ordinateur , basé sur le fonctionnement automatique, ne peut être dit libre. En définitive croire comme Marvin Minsky que le  » successeur » à savoir l’ordinateur remplacera un jour l’esprit humain, c’est nier la possibilité de l’autonomie, la possibilité de « devenir l’esprit »: c’est là la racine de tout fascisme , l’islam notamment qui est idolâtrie de la Sharia, de l’hétéronomie.

Toujours dans l’article de « mathematics without apologies »:

« Simon Donaldson made a point (around 30:15) with which most of my colleagues would agree: “One doesn’t read a mathematical paper, what one gets is the idea to reconstruct the argument it’s not that people (generally speaking) would be …checking the logic line by line — they would go and extract the fundamental idea; that’s really the essential thing. »

Là est la différence entre un fonctionnement automatique et le fonctionnement de l’esprit humain, qui saisit directement les idées à l’œuvre dans un texte mathématique. Ce point est très important, et c’est justement pour cette raison qu’il faut lire ces blogs mathématiques, qui se chargent de ce travail d’extraction et de saisie des idées.
Voici un nouveau blog mathématique intéressant dans cette perspective : celui du Professeur John Armstrong « The unapologetic mathematician« :

https://unapologetic.wordpress.com/about/

Un blog important du point de vue de cette saisie des idées ( c’est à dire du plan spirituel) pour « devenir l’Esprit » car il accorde une importance cruciale à la rigueur de la pensée.
Nous avons accordé ici une grande place à l’adjonction, voici quelques articles du blog « Unapologetic mathematician » sur ce thème, qui viennent heureusement compléter ce que nous avons dit ici:

https://unapologetic.wordpress.com/2007/07/16/adjoint-functors/

https://unapologetic.wordpress.com/2007/07/17/the-unit-and-counit-of-an-adjunction/

https://unapologetic.wordpress.com/2007/07/20/limits-are-adjoints/

https://unapologetic.wordpress.com/2007/07/30/transformations-of-adjoints/

Et enfin celui ci qui aborde la notion d’universalité et son lien avec l’adjonction:

https://unapologetic.wordpress.com/2007/07/19/adjoints-and-universality/

Et ce dernier aborde aussi les catégories enrichies dont nous avons vu les rudiments

https://unapologetic.wordpress.com/2007/09/04/enriched-adjunctions/

Publicités

Dualisation du travail de Pierre Samuel en 1948 et rapide envol vers le pays des chimères

Suite de la lecture annotée de l’article de David Ellerman sur Mac Lane, Bourbaki et l’adjonction:

http://www.ellerman.org/wp-content/uploads/2015/06/Maclane-Bourbaki-Redux.pdf

Venant après l’article précédent sur ce sujet:

https://meditationesdeprimaphilosophia.wordpress.com/2016/01/07/la-nouvelle-caracterisation-de-ladjonction-par-bodo-pareigis/

Page 7 de l’article d’Ellerman paragraphe 6 : Pierre Samuel, représentant de Bourbaki, travaillait sur les homomorphismes et les hétéromorphismes (appelés chimères ou morphismes chimériques « chimera morphism » parce qu’ils ont la queue dans un monde c’est à dire une catégorie et la tête dans une autre) dans des catégories d’ensembles structurés : S-ensembles (« S-sets ») et T-ensembles( » T-sets ») S et T étant les structures par exemple si S est la structure de groupe un S-ensemble est tout simplement un groupe, si T est la structure topologique un T-ensemble est un espace topologique :

https://fr.m.wikipedia.org/wiki/Groupe_(mathématiques)

https://fr.m.wikipedia.org/wiki/Espace_topologique

Les groupes sont organisés en catégorie en prenant comme flèches les homomorphismes entre les ensembles ayant la structure de groupes qui dont les morphismes (applications) respectant la structure de groupe si S est la structure de groupe ce sont des applications que Samuel nomme « S-mappings »
Si T est la structure topologique , ce que Samuel appelle « T-mappings » sont les homomorphismes de ce qui est maintenant appelé « catégorie des espaces topologiques » et ces morphismes sont les fonctions continues entre deux espaces topologiques:

https://fr.m.wikipedia.org/wiki/Continuité_(mathématiques)

c’est à dire les applications telles que l’image inverse d’un ouvert ( de la topologie de l’ensemble cible) est un ouvert ( de la topologie de l’ensemble source)

https://fr.m.wikipedia.org/wiki/Topologie

Les cas précédents de S-mappings et T-mappings sont des homomorphismes car on reste à l’intérieur d’une même structure (d’une même catégorie)
Par contre dès 1948 Pierre Samuel conçoit ce qui est maintenant appelé (par David Ellerman qui est le Grand Maître de cérémonie de ces sortes d’êtres mathématiques ) : hétéromorphismes ou chimères. Il les appelle S-T mappings ce sont des flèches qui envoient un S-ensemble sur un T-ensemble en étant compatible avec les deux structures S et T.
On connaît en mathématiques des êtres , appelés groupes topologiques ,ayant à la fois les deux structures S et T, avec en plus certaines conditions de compatibilité entre les deux structures, voir:

https://fr.m.wikipedia.org/wiki/Groupe_topologique

et ces groupes topologiques peuvent bien sûr etre organisés en une catégorie ( sinon ça se saurait) ayant comme flèches les (homo)morphismes respectant la structure de groupe topologique. Quelle est le lien entre ce que Pierre Samuel appelle S-T-mappings et ces (homo)morphismes de la catégorie des groupes topologiques ? Il faut bien voir que ce n’est pas la même chose car les S-T-mappings sont des hétéromorphismes, liant un S-ensemble ( un groupe) à un T-ensemble ( un espace topologique) , alors que les morphismes entre groupes topologiques sont des homomorphismes.
Nous sommes ici au coeur d’un problème philosophique important, celui de ce que David Ellerman appelle hétérophobie, ou « traitement hétérophobique, privilégiant les homomorphismes « , dans la mathématique classique, celle de Mac Lane notamment.
Pierre Samuel avait bien noté en 1948 que la composition d’un hétéromorphisme (« S-T-mapping ») avec un homomorphisme (« T-mapping ») est un hétéromorphisme.
Ici je dois signaler un important problème de notation : dans l’article que nous lisons actuellement Ellerman utilise pour les hétéromorphismes la flèche classique → alors que dans l’autre article il utilise la double flèche :
⇒ Je m’en tiendrai à ce dernier usage pour des raisons de cohérence.
Le problème universel tel que présenté par Pierre Samuel fait appel aux hétéromorphismes (« S-T-mappings »), on part d’un S-ensemble E, et pour tout hétéromorphisme (  » S-T-mapping »dans la terminologie de Samuel) :
φ : E ⇒ F
Vers un T-ensemble F on se pose le problème de définir un procédé canonique ( c’est à dire un foncteur en termes modernes) associant à φ un hétéromorphisme:

φ0 : E ⇒ F0

De manière telle que l’on ait un homomorphisme unique (universalité)de T-ensembles:

F0 → F
Faisant commuter le tout: (page 7)

F*φ0= φ
En notant* la loi de composition des morphismes.

Seulement Samuel ne voit pas le problème dit co-universel, dual du précédent (obtenu en renversant le sens de flèches) voir page 7, c’est pouquoi il passe de peu à côté de l’adjonction.
Aux paragraphes 7 et 8 suivants, pages 8 et 9, David Ellerman analyse l’oubli dit « hétérophobe » des hétéromorphismes dans les stades ultérieurs de la théorie des catégories et distingue semble t’il deux périodes dans la carrière de Mac Lane, que je ne connais pas assez bien pour confirmer ses dires.
Ainsi page 9 il analyse l’instrument des « Universal arrows  » d’un objet vers un foncteur dû à Mac Lane comme  » heterophobic device » , selon une définition ne faisant pas appel à la notion d’hétéromorphisme (« het-free »)
Alors que Mac Lane définissait au début des hétéromorphismes qui sont maintenant appelés cônes et qui apparaissent, en prenant leur « limite » , dans des constructions universelles telles que le produit de deux objets ( cf page 8)

David Ellerman : théorie hétéromorphique de l’adjonction

Nous accordons ici une grand emporta ce aux travaux de David Ellerman, voir:

https://mathesisuniversalis.wordpress.com/2015/08/12/david-ellerman-foncteurs-adjoints-et-heteromorphismes/

https://meditationesdeprimaphilosophia.wordpress.com/2015/10/11/david-ellerman-theorie-des-ensembles-et-universaux-abstraits/
Car ce chercheur place l’idée d’adjonction au rang le plus important des inventions dont nous sommes redevables à la théorie des catégories, et il donne une explication singulière,d’une clarté remarquable en utilisant la notion d’hétéromorphisme, de l’adjonction.
Cette théorie hétéromorphique de l’adjonction de foncteurs (ou de morphismes dans une 2-catégorie plus générale) est expliquée dans ces articles :

Adjoint functors and heteromorphisms :
http://www.ellerman.org/Davids-Stuff/Maths/Het-Theory.pdf

Et, dans une perspective plus historique :
Mac Lane, Bourbaki, and adjoints :a heteromorphic perspective:

http://www.ellerman.org/wp-content/uploads/2015/06/Maclane-Bourbaki-Redux.pdf

Auxquels il faut adjoindre  » Adjoint brains and functors » qui fait le lien avec les sciences de la vie:

http://arxiv.org/pdf/1508.04036v1.pdf

Ici, nous commencerons avec le paragraphe 3, page 6 à 14, titré  » Heteromorphic theory of adjoints » du premier de ces articles « Adjoint functors and heteromorphisms »
Un hétéromorphisme associe deux objets appartenant à deux catégories différentes, alors qu’un morphisme dans le sens usuel, appelé « homomorphisme », lie deux objets appartenant à une même catégorie attention à ne pas confondre une heteromorphismehétéromorphisme avec un foncteur qui associe à tout objet de la première catégorie un objet correspondant dans la seconde, et à tout morphisme entre deux objets de la première catégorie un morphisme entre les deux correspondants de ces objets dans la seconde catégorie (en respectant de plus la loi de composition des morphismes):

https://fr.m.wikipedia.org/wiki/Foncteur

Un morphisme entre deux objets de la même catégorie est X noté par une flèche simple:
x → y
Alors qu’un hétéromorphisme entre un objet x de X et un objet a de la seconde catégorie A est noté par une flèche double :

x ⇒ a
Nous avons déjà analysé le paragraphe 2 du travail de David Ellerman dans deux articles portant sur la notion de bifoncteurs ou de « distributeur » ou « pro foncteurs » ( quand il s’agit de formaliser les propriétés des homomorphismes). On peut de meme formaliser les propriétés des hétéromorphismes dans le cadre des Het-bifoncteurs, voir:

https://meditationesdeprimaphilosophia.wordpress.com/2015/10/04/foncteurs-adjoints-et-heteromorphismes-les-het-bifoncteurs/
( article hélas en mauvais état à cause de mauvaise utilisation des codes html par moi même) et le dernier faisant le parallèle entre Hom-bifoncteurs et Hat-bifoncteurs:

https://meditationesdeprimaphilosophia.wordpress.com/2015/10/05/adjonction-het-bifoncteurs-et-hom-bifoncteurs/

Comme il est rappelé page 6 au début du paragraphe 3.1, la définition la plus « classique » de l’adjonction passe par un isomorphisme « naturel » ( ce qui signifie qu’un tel isomorphisme peut être étendu à toute la catégorie) entre les ensembles d’homomorphismes (« Hom-sets ») et toute l’utilité de l’intervention des hétéromorphismes est expliquée par l’équation page 4:
HomA( Fx,a) ≅ Het(x,a) ≅ HomX(x,Ga)
Sous cette forme il est aisé de déceler la direction de l’adjonction : F est adjoint à gauche, car à gauche dans le premier membre de l’équation et G est adjoint à droite :la direction va aussi de X vers A.
Ceci se note, rappelons le:

F⊣G
L’équation ci dessus se lit aussi : le bifoncteur Het est représentable à gauche et à droite (cf page 4).
Le bifoncteur Het est le suivant:

Het: Xop× A → Ens
et envoie un couple d’objets (x,a) sur l’ensemble des hétéromorphismes liant x à à: x ⇒ a

L’idée de « problème universel » : un important promontoire pour une vision de l’unité de la mathesis

La notion de « problème universel » apparaît déjà chez Wronski où elle voisine avec celles de « loi suprême » et de « Teleiosis » dans la trinomie ou Sainte Trinité des idées de base du système. Voir ici:

http://www.ams.org/journals/bull/1893-02-08/S0002-9904-1893-00135-3/S0002-9904-1893-00135-3.pdf

l’article  du Professeur Echols « Wronski ´s expansion »où le probleme universel est assimilé à un cas particulier de la  » Loi suprême ».

Ce probleme est très clairement défini et Lagrange (pas le même que celui cité dans l’article précédent)le décrit ici (page 1) avant d’en donner la solution (fichier pdf recopié en bibliotheque de mon blog « mathesisuniversalis2.wordpress.com »):

https://mathesisuniversalis2.wordpress.com/?attachment_id=624

Il existe une page Wikipedia qui explique la notion en termes d’objet initial ou final (notions duales) dans une catégorie :

https://fr.m.wikipedia.org/wiki/Problème_universel

« Par suite, demander qu’un objet soit initial le définit à isomorphisme canonique près. En d’autre termes, de telles définitions permettent de se concentrer sur l’essentiel (le comportement de l’objet défini) sans se préoccuper des détails de sa construction.

Bien entendu, une telle définition ne prouve pas l’existence de l’objet, qui doit éventuellement être prouvée par une construction. Elle ne fait que débarrasser la définition de l’objet de tout ce qui est contingent. En contrepartie, elle oblige à intégrer dans la définition les outils nécessaires et suffisants pour la manipulation de l’objet.
Quand un objet mathématique est défini de cette façon, on dit qu’il est défini par un problème universel. »

Objet initial et objet final sont deux exemples de limites d’un diagramme ( on les obtient quand on prend la limite ou la colimite du diagramme vide),voir:

https://fr.m.wikipedia.org/wiki/Limite_(théorie_des_catégories)

Où l’on signale voir le paragraphe « Définition » que réciproquement toutes les limites peuvent être vues comme des objets terminaux (donc des solutions de problèmes universels)dans une certaine catégorie , celle des cônes dans F, où F est le foncteur correspondant au diagramme dont on cherche la limite.

Wronski est le « cas » de la famille, Echols parle dans l’article cité supra de ses démêlés avec les « savants à brevets » , mais ne nous y trompons pas : c’est un génie absolu , et Balzac ne pouvait pas se tromper dans son admiration fascinée pour ce personnage « l’une des plus fortes têtes de l’Europe » et je ne pense pas que les mathématiciens ( ceux de Bourbaki et après) modernes auraient pu garder ce titre de « problème universel » s’ils n’avaient pas partagé cette admiration, surtout compte tenu de l’importance de l’idée et non plus du mot.Une idée, celle de problème universel, qui semble justement se situer au coeur des débats qui agitèrent le groupe Bourbaki dans les années 50 à propos de la théorie des catégories, qui était apparue en 1945, voire en1942.Cet article de Ralf Kromer porte justement sur ce sujet appartenant à l’histoire des idées: « La machine de Grothendieck se fonde t’elle seulement sur des vocables métamathématiques ? Bourbaki et la théorie des categories dans les années cinquante »

http://smf4.emath.fr/Publications/RevueHistoireMath/12/pdf/smf_rhm_12_119-162.pdf

On y apprend plusieurs choses importantes :

-Samuel Eilenberg avait fui la Pologne très  tardivement , juste avant l’invasion nazie en 1939. Il s’installa aux USA sans problème, grâce à l’aide de la communauté mathématicienne, et travailla avec Saunders Mac Lane, c’est de leurs travaux en commun qu’est issue la théorie des categories en 1942 d’abord, mais surtout  en 1945 avec leur article séminal  » General  theory of natural équivalences ». Les idées de 1942 sont si l’on veut l’insémination, et l’article de 1945 la naissance, ou le baptême de la théorie. Eilenberg ne fut intégré au groupe Bourbaki que vers la fin des années 40. Il semble que Grothendieck grâce à un exposé qui avait été lu en son absence , alors qu’il se trouvait aux USA, avait gagné en grande partie la société des bourbakistes à la nouvelle théorie, qui entretenait des rapports étroits avec ce que Bourbaki appelait « structures » et qui forme la base du structuralisme si en vogue dans les annees 60, mais il se heurta à l’opposition d’André Weil, le mathématicien frère de Simone Weil (morte en1943, mais qui apparaît en compagnie de son frère sur certaines photos du groupe datant de 1938).Finalement ce fut ce dernier  qui gagna, Bourbaki refusa d’intégrer la théorie des catégories et Grothendieck démissionna du groupe.

Il semble qu’un certain article de Pierre Samuel (membre de Bourbaki) en 1948 intitulé « on universal mappings and free topological groups » ait une grande importance pour le sujet qui nous occupe, j’ai en tout cas trouvé plusieurs liens qui l’évoquent et lui accordent une place centrale, en liaison avec la notion de « problèmes universels » ( et je dois d’ailleurs signaler que d’après  l’article ci dessus de Ralf Kromer un thème récurrent de pensée chez Grothendieck  porte sur la commutativité des problèmes universels »(?)
 Il y a d’abord un article important sur le sujet des liens entre philosophie et mathématiques à travers la relation humaine et professionnelle de Jules Vuillemin et Pierre Samuel:

« Pierre Samuel et Jules Vuillemin: mathématiques et philosophie »

https://hal.archives-ouvertes.fr/hal-01082189/document

Il s’agit selon son auteur de « présenter une des modalités actuelles possibles de relations entre mathématiques et philosophie » en prenant pour objet d’étude les contributions et réflexions des deux auteurs(Pierre Samuel pour la mathématique et Jules Vuillemin pour la philosophie) sur le concept général de structure et examinant plus précisément la notion de « problème universel ».

Ajoutons que si Vuillemin est défini comme un philosophe, c’est lui qui a écrit « Mathématiques et métaphysique chez  » un livre auquel l’article fait souvent allusion, ce qui n’est guère une coïncidence puisque Descartes est ce philosophe qui le premier a tenté d’appliquer la méthode mathématique en métaphysique.(voir page 2 notamment)

Un autre article qui s’intéresse à Pierre Samuel et au « probleme universel » est dû à David Ellerman que nous connaissons déjà pour ses travaux tournant toujours autour de l’universalité en relation avec l’adjonction des foncteurs :

« Mac Lane, Bourbaki and adjoints : a heteromorphic perspective « 

http://www.ellerman.org/wp-content/uploads/2015/06/Maclane-Bourbaki-Redux.pdf

C’est effectivement Ellerman qui utilise la notion d’hétéromorphisme ( flèche entre deux objets situés dans des categories différentes, alors qu’un (homo)morphisme relie deux objets situés dans une même catégorie), pour clarifier la notion d’adjonction et de propriété universelle . Les articles suivants portent sur ses travaux en ce domaine:

https://meditationesdeprimaphilosophia.wordpress.com/2015/08/20/foncteurs-adjoints-heteromorphismes-et-homomorphismes/

https://mathesisuniversalis.wordpress.com/2015/08/12/david-ellerman-foncteurs-adjoints-et-heteromorphismes/

https://meditationesdeprimaphilosophia.wordpress.com/2015/10/05/adjonction-het-bifoncteurs-et-hom-bifoncteurs/
https://meditationesdeprimaphilosophia.wordpress.com/2015/10/04/foncteurs-adjoints-et-heteromorphismes-les-het-bifoncteurs/

Dans l’article mentionné ici, David Ellerman , qui fait une plus grande part à l’histoire des idées que les autres, que nous avions étudiés auparavant, part d’une remarque de Mac Lane suivant laquelle Bourbaki a manqué de peu l’invention de l’adjonction en 1948, invention qui est comme nous l’avons vu la plus importante de la théorie des categories:

https://meditationesdeprimaphilosophia.wordpress.com/2015/07/06/une-notion-fondamentale-ladjonction/

Ellerman poursuit en assurant que là encore l’utilisation de la théorie non orthodoxe ( faisant intervenir les hétéromorphismes) permet de clarifier les choses et de comprendre que Pierre Samuel s’est approché d’encore plus près de l’adjonction que l’on ne pourrait le penser à première vue. Car c’est Pierre Samuel qui a rédigé en 1948, non seulement l’article dont je parlais plus haut sur les  » Universal mapping probleme » mais l’appendice au premier jet du traité « Algèbre » de Bourbaki. Il a trouvé la  » left representation solving to a universal  mapping problem » ce qui constitue une première moitié d’une adjonction, la seconde moitié étant une représentation duale , à droite .

Il faut rappeler ici , comme il est précisé dans les deux pages Wikipedia suivantes :

https://en.wikipedia.org/wiki/Adjoint_functors

https://en.wikipedia.org/wiki/Universal_property

qu’une adjonction peut être vue comme résolution d’un problème d’optimisation , formulation assez générale pour couvrir tous les problèmes rencontrés en mathématiques et en physique (qu’est d’autre la recherche d’extrema d’un lagrangien en physique qu’un problème d’optimisation ?) .

https://en.wikipedia.org/wiki/Adjoint_functors

« It can be said that an adjoint functor is a way of giving the most efficient solution to some problem via a method which is formulaic. For example, an elementary problem in ring theory is how to turn a rng (which is like a ring that might not have a multiplicative identity) into a ring. The most efficient way is to adjoin an element ‘1’ to the rng, adjoin all (and only) the elements which are necessary for satisfying the ring axioms (e.g. r+1 for each r in the ring), and impose no relations in the newly formed ring that are not forced by axioms. Moreover, this construction is formulaic in the sense that it works in essentially the same way for any rng….

….This is rather vague, though suggestive, and can be made precise in the language of category theory: a construction is most efficient if it satisfies a universal property, and is formulaic if it defines a functor. Universal properties come in two types: initial properties and terminal properties. Since these are dual (opposite) notions, it is only necessary to discuss one of them….

The idea of using an initial property is to set up the problem in terms of some auxiliary category E, and then identify that what we want is to find an initial object of E. This has an advantage that the optimization — the sense that we are finding the most efficient solution — means something rigorous and is recognisable, rather like the attainment of a supremum. The category E is also formulaic in this construction, since it is always the category of elements of the functor to which one is constructing an adjoint. In fact, this latter category is precisely the comma category over the functor in question.

....The two facts that this method of turning rngs into rings is most efficient and formulaic can be expressed simultaneously by saying that it defines an adjoint functor…..

….Continuing this discussion, suppose we started with the functor F, and posed the following (vague) question: is there a problem to which F is the most efficient solution?

The notion that F is the most efficient solution to the problem posed by G is, in a certain rigorous sense, equivalent to the notion that G poses the most difficult problem that F solves.[citation needed]

This has the intuitive meaning that adjoint functors should occur in pairs, and in fact they do, but this is not trivial from the universal morphism definitions. The equivalent symmetric definitions involving adjunctions and the symmetric language of adjoint functors (we can say either F is left adjoint to G or G is right adjoint to F) have the advantage of making this fact explicit. »

Rappelons quand même que l’adjonction est orientée : on écrit :

F\dashv G.

pour signifier que le foncteur  F est adjoint à gauche du foncteur  G et G adjoint à droite de F

ce qui est rappelé par le fait que F figure dans le membre de gauche de la famille de bijections qui explicite l’adjonction :

\mathrm{hom}_{\mathcal{C}}(FY,X) \cong \mathrm{hom}_{\mathcal{D}}(Y,GX)

Noter que le point historique expliqué par Ellerman est mentionné à la fin de la seconde page Wikipedia : portant sur la notion « universal property » :

« Universal properties of various topological constructions were presented by Pierre Samuel in 1948. They were later used extensively by Bourbaki. The closely related concept of adjoint functors was introduced independently by Daniel Kan in 1958. »

En 1948 Bourbaki (via Pierre Samuel) a effectivement manqué de passer de la notion de « propriété universelle  » à celle de foncteur adjoint , ce qui a été réalisé 10 ans plus tard, en 1958, par Daniel Kan dans son article « Adjoint functors » qui est ici :

http://www.ams.org/journals/tran/1958-087-02/S0002-9947-1958-0131451-0/S0002-9947-1958-0131451-0.pdf

https://en.wikipedia.org/wiki/Daniel_Kan

La relation entre propriété universelle et adjonction peut aussi s’exprimer par la notion de foncteur représentable ce qui fait entrer en jeu une troisième page Wikipedia (est ce un hasard si ces trois pages sont excellentes ? ce qui n’est pas toujours le cas sur Wikipedia ? l’importance du sujet l’exige! là se trouve résumée toute la philosophie occidentale celle qui figure en notes de bas de pages de Platon selon Whitehead) :

https://en.wikipedia.org/wiki/Representable_functor

voir le dernier paragraphe « relation to universal morphisms and adjoints »

L’article est déjà assez lourd, nous étudierons l’article d’Ellerman dans un ou des articles suivants, en revenant aussi sur la forme qu’il utilise, celle  des hétéromorphismes , dans ses deux autres papiers et ensuite nous pourrons passer à l’article de Daniel Kan

 

 

 

 

Monades et adjonctions en théorie des catégories

La page Wikipedia est ici :
https://fr.m.wikipedia.org/wiki/Monade_(théorie_des_catégories)

Et elle établit bien le lien avec la notion fondamentale d’adjonction , se rappeler nos articles passés :

https://mathesisuniversalis.wordpress.com/2015/07/17/adjonction-3-dans-le-cadre-des-2-categories/
Et

https://meditationesdeprimaphilosophia.wordpress.com/2015/07/06/une-notion-fondamentale-ladjonction/

On peut lire aussi la page du Nlab qui a le mérite de lier la notion de mônade a celle de monofide dont elle est la categorification horizontale

http://ncatlab.org/nlab/show/monad

Rappel: un monoide est un ensemble muni d’une opération ou loi de composition * entre des éléments, opération associative, et muni aussi d’un élément neutre pour cette opération c’est à dire un élément 1 tel que pour tout élément y
Y*1 = 1 * y = y
Un groupe est un monoide tel que tout élément soit inversible pour l’opération c’est à dire tel que pour tout élément u il existe son inverse v défini par :
U* v= v* u = 1
e mônade peut donc être vue (page Wikipedia) comme un endofoncteur d’une catégorie C :
T : C ——–> C
Endofoncteur accompagné de deux transformations naturelles μ et η.
La transformation naturelle μ sera dirigée du foncteur identité sur C vers le foncteur T :
μ : 1———-> T
Et jouera le rôle de l’élément neutre dans le monoide voir ci dessus en considérant que le foncteur identité sur C noté 1 joue le rôle d’élément neutre pour la composition des foncteurs , et quant à la transformation naturelle μ elle jouera le rôle de la multiplication ou loi de composition dans le monoide voir lignes ci dessus, ainsi est comprise l’analogie entre monade et monoide , analogie qui est une categorification dite horizontale .
Dans la page Nlab une monade est expliquée comme un objet dans une bicategorie (une 2-categorie non stricte ) avec deux endomorphismes c’est à dire deux endofoncteurs et les deux transformations naturelles deviennent des 2- morphismes (en anglais « 2-cells »)
Satisfaisant aux équations spécifiée sur le page nlab comme sur le page Wikipedia au moyen de diagrammes car c’est cela un diagramme : l’analogie catégorique d’une équation en algèbre classique
image

image

A toute adjonction de foncteurs corresponde une monade et réciproquement à toute monade corresponde une adjonction, ceci a été démontrée ´ par Kleisli et Moore d’où le nom de deux catégories importantes associées à une monade, celle de
Kleisli et celle d’Eilenberg-Moore :

https://fr.m.wikipedia.org/wiki/Catégorie_de_Kleisli
En notant toutes ces analogies où la pensée à toujours l’impression de « retomber sur ses pattes  » tel un chat faisant des bonds et des acrobaties on se persuadera j’espère que le mathesis est le domaine où est réalisée l’unité de la pensée (humaine) que Grothendieck désignait du mot sanskrit de yoga volant dire « lien, jonction » et il utilisait fréquemment l’expression « yoga des foncteurs »

Foncteurs adjoints : hétéromorphismes et homomorphismes

Nous poursuivons l’étude du travail de David Ellerman sur la théorie des foncteurs adjoints et de l’adjonction qui est avec l’universalité l’un des thèmes les plus importants et les plus spécifiques de la théorie des catégories:

http://www.ellerman.org/Davids-Stuff/Maths/Het-Theory.pdf

Un (homo)morphisme est un morphisme, une flèche, entre deux objets d’une même catégorie, qui est (dans le cas des catégories concrètes) une collection d’entités mathématiques partageant la même structure reliées par des (homo)morphismes conservant la structure : ainsi dans le cas de la catégorie Grp des groupes les (homo)morphismes sont les flèches envoyant l’élément neutre du groupe source sur l’élément neutre du groupe cible, et telles que l’image du produit de deux éléments est le produit des images: f(a*b) = f(a)*f(b)

Un hétéromorphismes est une flèche entre deux objets appartenant à des catégories différentes : on appelle aussi un tel hétéromorphismes un morphisme-chimère (« chimera-morphism ») ou doit on traduire morphisme chimérique ?
On les note avec des flèches à double trait:
Si x est un objet de la catégorie X et a un objet de la catégorie A différente de X on note un hétéromorphisme allant de a vers b:

x ⇒ a

Les hétéromorphismes ne se composent pas entre eux, mais peuvent se composer à droite ou à gauche avec un homomorphisme pour donner un autre hétéromorphisme.
Ainsi dans le cas ci dessus, si y ——> x est un homomorphisme dans la catégorie X, le composé de l’heteromorphisme avec cet homomorphisme est un autre hétéromorphisme:

y ⇒ a

Notons Het(x,a) l’ensemble des hétéromorphismes de x vers a

Het(x,a) = {x ⇒ a}

On obtient alors un bifoncteur Het:

X_op x A —–> Ens

exactement comme pour les bifoncteurs Hom dans le cas des homorphismes dans A:

Hom : A_op x A —–> Ens

Ainsi par exemple le bifoncteur Het envoie un couple particulier d’objets (x,a) sur l’ensemble des hétéromorphismes {x ⇒ a}

Propriété universelle et foncteurs adjoints

Henosophia Τοποσοφια οντοποσοφια μαθεσις uni√ersalis ενοσοφια

Toujours dans la page Wikipedia en anglais sur l’idée de propriété universelle :

https://en.wikipedia.org/wiki/Universal_property

nous avons vu dans l’article précédent qu’une propriété universelle est un morphisme soit initial soit terminal dans la « comma-category » (XU)  ou (UX)

Il y a d’ailleurs une formulation équivalente (voir le paragraphe « Equivalent formulations », c’est de dire que le foncteur  HomC(X, U—), où le tiret après U désigne un objet variable de la catégorie D et où Hom(X, UZ) désigne l’ensemble des morphismes allant de X vers UZ dans la catégorie C, il s’agit donc d’un foncteur : D ——> Ens

que ce foncteur donc est représentable et que le doublet (A, φ) qui est la propriété universelle  (A, φ) dans les termes de la page en est une représentation, voir:

https://en.wikipedia.org/wiki/Representable_functor

(nous reviendrons sur les foncteurs représentables car c’est…

View original post 609 mots de plus