Archives du mot-clé topos theory

« Qu’est ce qu’une chose? » : physique et théorie des topoi

Qu’est ce qu’une chose ?
Cette question qui revient souvent chez Heidegger donne son titre au travail de 212 pages de Isham et Doering:

« What is a thing? topos theory in thé foundations of physics »

qui est ici sur Arxiv:

http://arxiv.org/pdf/0803.0417.pdf

et commence d’ailleurs sur une citation de Heidegger qui rappelle qu’il s’agit d’une question ancienne, et que ce qui reste toujours nouveau à son propos, c’est qu’elle doit être posée encore et toujours encore.

Mais Heidegger dit aussi à propos de l’anecdote platonicienne sur Thales de Milet et la servante Thrace qui rit en le voyant tomber dans un puits par ce qu’il regardait le ciel et les astres et non pas le sol devant lui:

https://mathesismessianisme.wordpress.com/le-rire-de-la-servante-de-thrace/

« 

«C’est pourquoi nous devons définir la question : « qu’est ce qu’une chose ? » comme étant de celles qui provoquent le rire des servantes »

 »

Cela renvoie à deux attitudes fondamentalement opposées face au monde et à la vie : l’attitude utilitaire qui dans la fable est rattachée à la servante Thrace, état d’esprit uniquement préoccupé de le quotidienneté et qui ne se demande pas ce qu’est une chose, mais comment utiliser au mieux telle chose particulière, et l’attitude théorétique et réflexive qui est celle du savant et du philosophe.
Cette question pourra évidemment sembler « métaphysique » à beaucoup, avec une nuance péjorative, et c’est selon Isham et Doering le cas de beaucoup de leurs collègues scientifiques, mais eux réclament (page 9) le droit sur ce point à l’indépendance d’esprit.
L’entrée fracassante de la théorie des topoi en physique théorique date d’ol y a 15 ou 20 ans, avec les premiers travaux d’Isham et Butterfield notamment, et il correspond, surtout le travail dont nous parlons ici, à notre réflexion, car selon nous la science née il y a 4 siècles n’a pas en priorité une vocation utilitaire, mais vise à nous libérer justement de notre asservissement au monde des « choses » c’est à dire des apparences, mais non pas en nous faisant prendre conscience d’un « oubli de l’être » (comme l’affirme Heidegger) mais d’un oubli de l’Un.
D’accord donc pour poser à nouveau la question et nous situer ainsi dans la foulée de Heidegger. Mais La question va subir une profonde mutation et Heidegger risquerait de ne plus reconnaître son bébé s’il était encore de ce monde.
C’est que, comme Isham-Doering le font remarquer page 10, dans l’Introduction, les physiciens théoriciens ont l’avantage par rapport aux philosophes de disposer depuis trois siècles du cadre d’un formalisme mathématique qui leur sert à la fois de garde-fou et de guide.
La position de Heidegger sur le problème semble réaliste , puisqu’une chose doit selon lui être pourvue ou non de telle ou telle propriété.
Mais cette attitude réaliste qui est celle aussi de la physique classique doit obéir, concernant le formalisme mathématique et son évolution, à trois réquisits stricts et précis:
1 l’idée de propriété du système est non équivoque et doit conduire à un traitement mathématique précis.
2 les propositions à propos du système doivent pouvoir être « gérées » par une logique de type booléen.
3 il existe un « espace des états » et la spécification précise d’un état doit mener à des valeurs précises pour les quantités étudiées et donc à des propositions sans équivoque.
Ce schéma, qui est celui de la physique classique et à parfaitement fonctionné depuis les temps newtoniens jusqu’à l’irruption de la physique quantique il y a un siècle, se résume en disant que si un état du système (généralement un point sur une variété différentielle) est spécifié, alors la valeur d’une quantité A est un nombre réel précis, ce qui se traduit par l’association à toute quantité étudiée par la théorie d’une fonction à valeurs réelles A :

A : S ————) R

où S est l’espace des états, et R le corps des nombres réels.

Or l’émergence de la physique quantique conduisant au théorème de Kochen-Specker, qui montre qu’il est impossible d’assigner une valeur précise à toutes les quantités en respectant les conditions de cohérence, rend nécessaire selon les auteurs une évolution depuis le réalisme naïf de la physique classique (qui selon eux serait aussi celui de Heidegger, ce qui est à vérifier mais est ce possible si l’on sort du cadre mathématique ?) vers un neo-réalisme qui serait celui du cadre théorique des topoi.
Ils ont l’idée de généraliser la flèche A ci dessus qui est une fonction de l’espace des états à valeurs réelles à une flèche dans un topos:

A : Σ ———-> R

Σ et R sont deux objets dans un topos différent du topos Ens des ensembles qui est celui de la physique classique.
Les propositions en physique classique sont des sous-ensembles de l’espace des états S, et elles doivent être manipulables par la logique classique booléenne.

La volonté de généraliser ceci conduit à la nécessité de se situer dans un topos et non dans n’importe quelle catégorie, car il est connu mathématiquement que dans un topos les sous-objets d’un objet ont une structure d’algèbre de Heyting tout comme l’objet des valeurs de vérité Ω (« truth-object ») qui n’est autre que ce que Badiou appelle dans « Logiques des mondes » le transcendantal. Seulement Badiou ne parle pas de physique, conformément au réquisit de son système des quatre conditions de la philosophie, où n’entre pas la physique.
Nous qui réduisons à deux : physique et mathématique, les « conditions » de la philosophie idéaliste (et non pas réaliste) mathématisante que nous appelons désormais:

HENOSOPHIA Τοποσοφια μαθεσις uni√ersalis οντοποσοφια ενοσοφια

nous n’avons pas ce genre de prévention:

https://meditationesdeprimaphilosophia.wordpress.com/2015/07/15/foncteurs-adjoints-et-quelques-considerations-sur-la-philosophie-et-la-τοποσοφια-οντοποσοφια-μ/

ce qui nous permet de voir que l’objet A dans un topos analogue de l’espace des états de la physique classique ressemble fort à de l’être, et non de l’apparaître.
Badiou n’aurait il pas voulu garder sans le dire et même peut être sans le penser l’idéalisme brunschvicgien face au neo-realisme de l’approche par les topoi selon Isham-Doering mais aussi presque tous les physiciens connaissant cette approche ?

Nous espérons donc grâce à ces travaux aborder des débats philosophiques de fond sur notamment la question idéalisme-réalisme, et nous lançons ce nouveau thème « physique et topoi » sans même avoir terminé, et loin s’en faut, les topoi de Grothendieck (cours d’Olivia Caramello) ou les bases de la théorie des catégories comme l’adjonction.

C’est que nous sommes dans l’urgence car selon des gens crédibles 2016 pourrait bien être l’année de l’éclatement de la guerre totale en France et en Europe, voir:

http://ripostelaique.com/les-djihadistes-ont-prevu-la-confrontation-totale-pour-2016-resistants-preparons-nous.html

et nous devons donc désormais vivre et agir avec l’idée de la prochaine

mort qui viendra et n’aura pas tes yeux Béatrice mais ceux d’un fanatique hurlant : « ALLAHOU AKBAR »

Publicités

Une notion fondamentale : l’adjonction

dans un précédent article:

https://mathesisuniversalis.wordpress.com/2015/06/24/morphismes-geometriques-et-2-categorie-topos-des-topoi-comme-cadre-general-de-nos-travaux/

nous avons vu, à titre d’hypothèse bien sûr, comme c’est le caractère (spéculatif) de tout ce qui est développé ici, que le schéma fondamental de ce que nous appelons μαθεσις uni√ersalis οντοποσοφια pourrait être représenté par ce que l’on appelle un morphisme géométrique entre deux topoi, c’est à dire une paire de foncteurs adjoints entre deux topoi:

U. : E —————-> S

où le topos E , généralement la catégorie Ens des ensembles, jouerait le rôle de ce que Wronski appelle dans sa philosophie élément-être, le topos S correspondrait à l’élément-savoir, le plan de l’idée, et le morphisme à l’élément-neutre qui « unifie » être et savoir.
Nous voyons donc que pour poursuivre, il faut étudier à fond la notion d’adjonction, qui est cruciale en mathématiques et en théorie des catégories.

Or cela demande une compréhension plus que formelle, comme c’est souvent le cas en mathématiques, pour ne pas parler de la « philosophie mathématique » que nous désirons développer ici.

Sur cette page qui permet de poser des questions à la communauté des mathématiciens :

http://mathoverflow.net/questions/6551/what-is-an-intuitive-view-of-adjoints-version-1-category-theory

un « topologiste » qui connaît le sens de la notion de « foncteurs adjoints » se demande comment il pourrait expliquer la notion à respectivement un enfant de 5 ans, le « passager ordinaire du bus de Clapham » ou même à un « undergraduate » …

Il obtient des tas de réponses intéressantes, souvent tirées de liens ou de blogs connus, à part la première qui fait l’analogie avec les problèmes d’approximation la meilleure d’un nombre rationnel ou réel par un entier…quant à savoir si un enfant de 5 ans comprendrait c’est une autre paire de manches.

Quoiqu’il en soit, nous voyons quel est le défi à relever, puisque la compréhension que nous visons dépasse largement celle désirée par ce topologiste.

Mais ici se dresse devant nous un Interdit, édicté par nulle déesse ou dieu, mais par notre simple promesse faite à nous même de ne pas nous contredire, ou, si nous le faisons et nous en aperçevons, au moins de ne pas nous en féliciter et glorifier (comme c’était l’habitude d’Hitler paraît il).

Nous ne prétendons pas que des morphismes géométriques, ou nulle autre construction mathématique, puisse représenter l’UN, et certainement pas non plus le « compte-pour-un » ensembliste de Badiou.

On ne peut et ne doit pas « parler de l’Un » puisque ce serait « prendre l’Un pour objet de notre discours », or l’Un ne peut certainement jamais être objet, même d’un discours.

Ou encore :

« on ne peut parler que de ce dont on parle » (Alexandre Kojève)

ou

« ce dont on ne peut pas parler, il faut le taire » (Wittgenstein)

Et pourtant nous entendons bâtir ici une « cathédrale au soleil » que nous appelons :

« 

HENOSOPHIA TOPOSOPHIA μαθεσις uni√ersalis οντοποσοφια ενοσοφια

 »

en tant que « Voie de l’homme rusé » (sinon de « l’homme aux mille tours πολυτροπος ») qui en quelque sorte transgresserait l’Interdit et parlerait de ce dont on ne peut parler : de l’UN.

https://en.wikisource.org/wiki/Kubla_Khan

« In Xanadu did Kubla Khan
A stately pleasure-dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.
 »

Tâchons d’expliquer pourquoi nous nous disposons à une telle entreprise sans avoir sombré dans la folie (espérons le du moins, et sans « raconter des histoires » à la façon du Bateleur (qui sévit en ce moment à la table des négociations de Bruxelles)

1-bateleur (2)

Einstein s’étonnait (et faisait plus que s’étonner, puisqu’il parlait de cela à propos de la question de Dieu) du fait que l’univers soit intelligible par la physique.

Or l’univers c’est l’élément-être EE de Wronski, la physique c’est l’élément-savoir ES, nous voyons donc que si nous voulons un jour « faire entrer de la lumière intelligible » dans la « sunless sea » (qui est le monde), il nous faudra certainement passer par l’élément-neutre EN « identité de l’être et du savoir » dont nous ne savons pas vraiment si elle est primitive ou finale (messianique).

EN en quoi nous voyons une image de l’UN, sous la forme d’unification et à la fin des Temps d’identification de l’être et du savoir.

« ce jour où tout l’être sera passé en savoir »

Et nous avons expliqué que nous cherchons cette « compréhension » dans un schéma qui est pour nous le point de départ :
un topos E (être) , un topos S (savoir) et un morphisme géométrique (paire de foncteurs adjoints) les reliant : U (un)

Dans le néant de ces formes pures nous espérons trouver ce qui pour nous sera le Tout…

Nous espérons : cela signifie que nous ne proclamons certainement pas « déternir » une compréhension, puisque nous la cherchons….

http://medecinealgerie.actifforum.com/t1089-samuel-taylor-coleridge-kubla-khan

« La Demoiselle au Tympanon
Dans une vision m’apparut :
C’était une fille d’Abyssinie,
Et sur mon Tympanon elle jouait,
En chantant le mont Abora.
Si je pouvais revivre en moi
Sa symphonie et sa chanson,
Je serais ravi en des délices si profondes,
Qu’avec musique grave et longue,
Je bâtirais ce palais dans l’air :
Ce palais de soleil ! ces abîmes de glace !
Et tous ceux qui entendraient les verraient là,
Et tous crieraient : Arrière ! arrière !
Ses yeux étincelants, ses cheveux flottants !
Tissez un cercle autour de lui trois fois ;
Fermez vos yeux frappés d’une terreur sacrée :
Il s’est nourri de miellée ;
Il a bu le lait de Paradis.
 »

nul n’entre ici s’il ne se soumet à la discipline fonctorielle

Un foncteur est un morphisme reliant deux catégories, c’est à dire un « passage » de l’une à l’autre respectant la structure.

La notion de « morphisme » est fondamentale en théorie des catégories, du point de vue philosophique aussi bien que mathématique.

Dans une catégorie on a deux sortes d’entités : les objets, et les morphismes reliant les objets entre eux.

http://fr.wikipedia.org/wiki/Th%C3%A9orie_des_cat%C3%A9gories

Une catégorie \mathcal C, dans le langage de la théorie des classes, est la donnée de quatre éléments :

  • Une classe dont les éléments sont appelés objets ;
  • Un ensemble \mathrm{Hom}\big(A,B \big), pour chaque paire d’objets \quad A   et  \quad B, dont les éléments \quad f sont appelés morphismes (ou flèches) entre \quad A et \quad B, et sont parfois notés f:A\rightarrow\; B ;
  • Un morphisme \mathrm{id}_A:A\rightarrow\;A, pour chaque objet \quad A, appelé identité sur \quad A ;
  • Un morphisme g\circ f:A\rightarrow\;C pour toute paire de morphismes f:A\rightarrow\;B  et g:B\rightarrow\;C, appelé composée de \quad f et \quad g, tel que :
  • la composition est associative : pour tous morphismes f:c\rightarrow\;d, g:b\rightarrow\;c   et   h:a\rightarrow\;b,
(f\circ g)\circ h=f\circ(g\circ h) ;
  • les identités sont des éléments neutres de la composition : pour tout morphisme f:A\rightarrow\;B,
\mathrm{id}_B\circ f=f=f\circ\mathrm{id}_{A}.

On demande aussi que : \mathrm {Hom} (A, B) \cap \mathrm {Hom} (C, D) = \varnothing   si  \big(A, B\big)\neq \big(C, D\big).

Les catégories peuvent elles mêmes être les « objets » de nouvelles catégories, qui seront des catégories de catégories ; les morphismes, ou flèches, reliant les objets de ces nouvelles catégories, seront alors des foncteurs.

http://fr.wikipedia.org/wiki/Foncteur

un foncteur respecte la structure parce qu’il envoie les morphismes identité sur les morphismes identité et conserve la composition des flèches d’une catégorie à l’autre :

« Un foncteur (ou foncteur covariant) F : \mathcal C\to\mathcal D d’une catégorie \mathcal C dans une catégorie \mathcal D est la donnée

  • d’une fonction qui, à tout objet A de \mathcal C, associe un objet \displaystyle F(A) de \mathcal D,
  • d’une fonction qui, à tout morphisme f : A \to B de \mathcal C, associe un morphisme F(f) : F(A)\rightarrow F(B) de \mathcal D,

qui

  • respectent les identités : pour tout objet A de \mathcal C,
\displaystyle F(\mathrm{Id}_A)=\mathrm {Id}_{F(A)} ,
  • respectent la composition : pour tous objets A, B et C et morphismes f : A \to B et g : B \to C de \mathcal C,
F(g\circ f)=F(g)\circ F(f).

Un foncteur contravariant G d’une catégorie \mathcal C dans une catégorie \mathcal D est un foncteur covariant de la catégorie opposée \mathcal C^{\mathrm{op}} dans \mathcal D (à tout morphisme f : A \to B de \mathcal C il associe donc un morphisme G(f) : G(B)\to G(A) de \mathcal D, et on a la « relation de compatibilité » G(g\circ f)=G(f)\circ G(g)).

On voit immédiatement que l’image d’un isomorphisme par un foncteur est un isomorphisme. »

Toute structure mathématique peut être vue comme une catégorie : ainsi un ensemble est une catégorie où il n’y a pas de flèches entre les objets; un foncteur entre deux ensembles est alors simplement une fonction.

De même un foncteur entre deux groupes (considérés comme catégories) est en fait un homomorphisme de groupes (conservant l’élément neutre et la composition).

 » La classe Grp des groupes comprend tous les objets ayant une « structure de groupe ». Plus précisément, Grp comprend tous les ensembles G munis d’une opération qui satisfait un certain ensemble d’axiomes (associativité, inversibilité, élément neutre). Des théorèmes peuvent ainsi être prouvés en effectuant des déductions logiques à partir de cet ensemble d’axiomes. Par exemple, ils apportent la preuve directe que l’élément identitéd’un groupe est unique.

Au lieu d’étudier simplement l’objet seul (les groupes) qui possède une structure donnée, comme les théories mathématiques l’ont toujours fait, la théorie des catégories met l’accent sur les morphismes et les processus qui préservent la structure entre deux objets. Il apparaît qu’en étudiant ces morphismes l’on est capable d’en apprendre plus sur la structure des objets.

Dans notre exemple, les morphismes étudiés sont les homomorphismes de groupes. Un homomorphisme de groupe entre deux groupes préserve la structure de groupe d’une manière très précise ; c’est un processus qui à un groupe en associe un autre, tout en préservant toutes les informations sur la structure du premier groupe au sein du second groupe. Ainsi :

  • à chaque élément x du groupe de départ est associé un élément f(x)du groupe d’arrivée ;
  • à chaque opération x \bullet y du groupe de départ est associée une opération f(x \bullet y) = f(x) \star f(y) du groupe d’arrivée.

Une manière équivalente de décrire cette préservation de structure est de dire que toutes les manières d’aller du couple d’éléments quelconques (x, y) à f(x) \star f(y) mènent au même résultat :

  • on peut d’abord aller de (x, y) à x \bullet y par la loi de composition \bullet, puis de x \bullet y à f(x \bullet y) par le morphisme f ;
  • ou bien l’on peut aller d’abord de (x, y) à (f(x), f(y)) par le morphisme f, puis de (f(x), f(y)) à f(x) \star f(y) par la loi de composition \star.

Pour dire que tous ces chemins mènent au même résultat, on peut énoncer que le diagramme qui les représente est commutatif, ou que f(x \bullet y) = f(x) \star f(y).

L’étude des homomorphismes de groupe fournit un outil pour étudier les propriétés générales des groupes et les conséquences des axiomes relatifs aux groupes. »

Il y a donc  la catégorie des groupes, ayant pour objets les groupes et pour morphismes les homomorphismes de groupes, mais un groupe particulier G peut être vu comme une catégorie à un seul objet, qui sera confondu avec le groupe et sera donc noté G.

Les éléments du groupe seront les morphismes, qui ne peuvent relier que G à G puisqu’il n’y a que ce seul objet, la composition des morphismes s’identifiera avec la composition des éléments du groupe, et le morphisme identité sera l’élément neutre. On voit alors immédiatement qu’un foncteur entre deux groupes G et H considérés comme catégories est tout simplement la même chose qu’un homomorphisme entre les deux groupes, considérés comme ensembles munis d’une loi de composition et d’un élément neutre.

On traduira et généralisera cela en disant que la notion de foncteur est la catégorification horizontale de celle d’homomorphisme , voir :

http://ncatlab.org/nlab/show/horizontal+categorification

La théorie des catégories met l’accent sur les morphismes, les transformations, plutôt que sur les objets, les substances.

A tel point que l’on peut même exposer la théorie en se passant de la notion d’objet, en idnetifiant un objet avec son morphisme identité; une catégorie C quelconque  est alors identitifée avec son foncteur Identité

Id : C ———> C  est identifié à C

comment ne pas voir qu’un foncteur, et plus généralement un morphisme, a à voir avec la notion de transformation, et donc de temps, d’évolution temporelle…

Si je puis parler de l’évolution d’un être vivant, ou d’une chose, ou d’un objet abstrait (une théorie, ou même un autre « objet » plus général) dans le temps, c’est bien que je puis parler de la « même chose » (mais changée, ayant évolué) à deux instants différents du temps; il doit donc y avoir un « foncteur temporel » faisant passer l’objet qui est la chose d’un état correspondant à l’instant 1 à l’état correspondant à l’instant 2.

La théorie des catégories met l’accent sur le temps, la transformation, elle est « héraclitéenne » plutôt que « parménidienne » , parce que le temps, qui correspond aux « objets » de l’esprit, est plus fondamental que l’espace.

Au fond, l’espace n’est qu’une abstraction, une « coupe instantanée » prise sur la devenir, qui seul est réel : quand vous regardez le ciel étoilé nocturne, vous regardez en fait dans le temps, dans le passé.

La notion de « substance », d’entité qui reste « la même » au cours du temps, provient du caractère fonctoriel du temps, qui « conserve » des invariants structurels : ainsi si je suis « le même personnage » qu’il y a un an (tout en étant plus vieux d’un an, et ayant changé donc), c’est que le foncteur du temps a conservé ma structure profonde, et pas seulement le squelette du corps.

Que le temps, l’élément spirituel, soit « conversion vers l’un » n’empêche pas qu’il ne puisse devenir exactement l’inverse pour les damnés de la terre : l’enfer, la damnation ne se situe pas dans un « outre-monde », mais ici, et il consiste en l’inversion du caractère « bon »‘ du Temps !

au lieu d’être conversion à l’un, celui ci est pour les damnés dispersion accélérée dans le multiple des « préoccupations », des désirs, des envies, des ressentiments, des frustrations.

Là encore, Balzac est le peintre de génie de cette réalité sordide et démoniaque : que l’on songe au Baron Hulot (dans « La cousine Bette » ), qui avec l’âge est de plus en plus obsédé par le sexe, et l’envie forcenée de « trousser des jeunes filles »…on en connaît des exemples de nos jours, n’est ce pas ?

tel est l’enfer sur Terre, ou l’une de ses formes, et telel est l’explication rationnelle, philosophique, des mythes chrétiens, dans leur sublimité souvent incompirse des foules qui s’en réclament !

La « conversion vers l’un », la fidélité au caractère « bon » du temps, ce n’est rien d’autre que la sagesse de Brunschvicg qui fait trouver la vie « absolument bonne » :

« la vie est bonne, absolument bonne, du moment que nous avons su l’élever au dessus de toute atteinte, au dessus de la fragilité et de la mort »

seulement si l’ on n’a pas su renoncer à la mort,  si la vieillesse coïncide avec la dispersion dans la multiplicité chaotique des désirs et des pulsions, alors il n’est pas vrai que la vie est bonne : elle est au contraire absolument infernale !

On trouve une application de ces réflexions  sur lees foncteurs et morphismes comme modèles de l’volution temporelle dans cet article de Louis Crane :

http://arxiv.org/pdf/hep-th/9301061v1.pdf

voir page 2 : un « état de l’univers » en gravité quantique est dans ce schéma un foncteur de la catégorie des observations (définie page 2, un observateur est formalisé par une variété différentielle ) dans la catégorie des espaces vectoriels. Un état coîncide alors avec une TQFT (« topological quantum field theory »)

L’évolution temporelle entre deux états, qui sont deux focnteurs, est alors modélisée par un « morphisme de foncteurs », appelée « transformation naturelle »

http://fr.wikipedia.org/wiki/Transformation_naturelle

C’est là une notion extrêmement importante, un peu dure à « capter » au début, mais finalement assez simple :

« Soient C et D deux catégories, F et G deux foncteurs covariants de C dans D. Une transformation naturelle η de F vers G est la donnée, pour tout objet X de C, d’un morphisme de D :

\eta_X : F(X) \rightarrow G(X),telle que pour tous objets X et Y de C et tout morphisme f de X dans Y, le diagramme suivant soit commutatif  :

NaturalTransformation-01.png

On peut de même définir la notion de transformation naturelle entre deux foncteurs contravariants en inversant uniquement le sens des flèches horizontales du diagramme ci-dessus.

Si pour tout objet X de C, \eta_X est un isomorphisme, on dit que \eta est une équivalence naturelle ou un isomorphisme naturel. »

Ainsi, en faisant le lien avec le texte de Wronski étudié hier :

https://meditationesdeprimaphilosophia.wordpress.com/2012/05/23/wronski-introduction-a-la-philosophie-des-mathematiques/

on peut dire que les « objets » d’une catégorie sont liés à la notion d’espace, de « coupe transversale » d’un processus semblant l’immobiliser (que l’on songe à la fameuse scène de « Vertigo » où James Stewart et Kim Novak se promenant en forêt se penchent sur un arbre coupé où l’on « voit spatialement » le déroulement du temps depuis sa naissance jusqu’à sa coupe)

Les morphismes (et foncteurs, et transformations naturelles) sont liés au temps.

https://twitter.com/philotopos/statuses/204650900382425089

le temps est tension, mouvement des étants vers l’Un, conversion ; l’espace est principe de dispersion, de multiplicité, procession.

Un autre lien important avec l’oeuvre mathématique de Wronski concerne les déterminants (de matrices, en algèbre linéaire) , qui sont les fonctions Schin de Wronski.

Or un déterminant peut être vu comme une transformation naturelle entre deux foncteurs :

http://www.case.edu/artsci/math/wells/pub/pdf/ttt.pdf

(voir page 14-15 du livre, pages 27-28 du document pdf ayant 303 pages)

la dualité de l’Etre et de l’Un

le terme « toposophists », ou « toposophers », est en provenance des « working mathematicians » dans la théorie des catégories, il possède sans doute une nuance « humoristique »…

bien entendu je ne suis pas digne de délier le lacet de la chaussure de ces grands Travailleurs, héros de la pensée pure, mais je me risquerai ici à emprunter ce terme pour désigner une nouvelle « discipline », ou plutôt le projet d’une telle innovation, qui est en dehors du strict domaine mathématique (sinon ce blog serait sans aucun intérêt, face aux centaines d’autres qui en restent à ce domaine), et vise à fonder une philosophie enfin entièrement « scientifique » et rigoureuse.

En un mot comme en cent : la toposophie consiste à utiliser la force-de-pensée (terme emprunté à François Laruelle) ou , disons,  la puissance de la pensée « solide » des mathématiques (et principalement de la théorie des topoi et des topoi supérieurs, ou n-topoi), pour fonder cette nouvelle et définitive philosophie, censée réaliser le vieux projet de Mathesis universalis cartésien et leibnizien, ou celui de « messianisme » de Wronski, en une union absolue de la science, de la philosophie et de la religion (appelée « christianisme de philosophes », et devant dépasser les logoi chrétiens et juifs en une fondation péremptoire de la Vérité sur la Terre, en une âme et un corps).

Donnons ici un premier exemple , très simple, dérivé presqu’ immédiatement des indications que j’ai données ici ou là sur l’essence fonctorielle de la loi de création de Wronski.

On sait que j’ai remplacé le vieux fatras métaphysique et « onto-théologique » de l’Etre et de l’Un par l’immanence duelle de deux orientations radicalement opposées de la pensée : selon l’Etre et selon l’Un.

J’ai aussi donné les références des travaux, extrêmement importants à mon sens, de Franck Jedrzejewski sur les diagrammes et les catégories :

https://meditationesdeprimaphilosophia.wordpress.com/2012/04/24/en-france-du-nouveau-franck-jedrzejewski-diagrammes-et-categories-these-et-introduction/

travaux de lecture assez « difficile » pour ceux qui ne sont pas habitués à la strict discipline du Mathème, de cette « mathématique sévère » qu’invoquait Lautréamont, mais pour lesquels nous avons heureusement une « introduction » en 6 pages très denses :

http://nessie-philo.com/Files/jedrzejewski_dcintro.pdf

notez la différence des attitudes entre les deux « femmes » qui tentent d’orienter l’Amoureux (aucun rapport avec la future ex-présidente de France et ses chansons niaises) de la Lame VI du Tarot : la femme de gauche est la mathématique sévère et austère, elle ne promet aucun vil plaisir, mais une joie continue et souveraine acquise au prix d’un travail très long et très dur : celle de droite invite l’Amoureux à  « se rendre dans une vile maison suspecte se plonger dans le bourbier des voluptés dangereuses » , pour reprendre les termes balzaciens des « Illusions perdues »…nul doute que si le Tarot était « moderne », il la représenterait seins nus, et la main tripotant l’Amoureux un peu plus bas!

Vénus des carrefours !

mais l’Amoureux (nous tous, et nous toutes, car le sexe perd sa prédominance dans le domaine de l’Esprit) est libre de choisir le sang, la sueur et les larmes, ou bien… d’autres fluides, ceux que le général Jack Ripper appelle « précieux fluides naturels » dans « Dr Strangelove » de Kubrick…

mais revenons aux topoi et aux Saintes catégories !

attachons nous ici aux deux derniers piliers de ce quadrilatère épistémique de Franck  Jedrzejewski, à savoir l’universalité et la dualité.

J’ai déjà indiqué la nature entièrement différente de l’universalisme de la pensée catégorique par rapport à celui, dérivant en matérialisme et communautarisme, de la pensée ensembliste :

http://leserpentvert.wordpress.com/universalisme-abstrait-ou-concret/

aussi me contenterai je ici de souligner la simplification et le clarification conceptuelle (sens auquel aurait dû se limiter l’Aufklärung) qu’apporte la théorie des catégories :

-la dualité consiste à inverser le sens des flèches dans une catégorie

– l’universalité (des constructions appelées « universelles » en théorie des catégories) c’est quand il n’y a qu’une seule flèche possible pour « boucler », ou « faire commuter », un diagramme.

Voir la thèse de Franck Jedrzejewski pour plus de précisions, ou bien ces liens :

http://ncatlab.org/nlab/show/universal+construction

http://en.wikipedia.org/wiki/Universal_property

mais donnons dès maintenant un exemple qui servira par la suite à de nombreuses reprises : celle des notions catégoriques généralisant le produit (la multiplication des nombres) et la notion duale de coproduit, généralisant la somme (l’addition des nombres).

http://en.wikipedia.org/wiki/Product_(category_theory)

La figure suivante est un diagramme dont la « limite » donne le produit  :

Universal product of the product
 
et la flèche f  unique (à un isomorphisme près) en pointillé faisant « commuter » le diagramme est le produit des deux morphismes f1 et f2
 
La précision « à un isomorphisme près » est importante , c’est toujours le cas pour une construction universelle; rappelons qu’un isomorphisme est tout simplement une flèche inversible :
 
« Dans une catégorie C, un isomorphisme est un morphisme f:A\to B tel qu’il existe un morphisme g:B\to A qui soit « inverse » de f à la fois à gauche (g\circ f=\mathrm{id}_A) et à droite (f\circ g=\mathrm{id}_B).Il suffit pour cela que f possède d’une part un « inverse à gauche » g et d’autre part un « inverse à droite » h. En effet, on a alors

g=g\circ\mathrm{id}_B=g\circ(f\circ h)=(g\circ f)\circ h=\mathrm{id}_A\circ h=h,

ce qui prouve en outre l’unicité de l’inverse »

la notion duale de celle du produit est le coproduit, qui appliqué aux nombres donne la somme, l’addition :

http://en.wikipedia.org/wiki/Coproduct

Coproduct-03.png
 
le produit est un exemple de la limite d’un diagramme, le coproduit un exemple de colimite :
 
signalons dès à présent une aporie entre ces notions modernes et la loi de création de Wronski appliquée aux mathématiques : selon lui, le produit est l’élément neutre, la somme et l’exponientiation sont EE et ES, or on attendrait que la somme soit duale du produit, et donc que l’exponentiation soit l’élément neutre EN
 
à creuser plus tard…
 
remarquons aussi que le terme, catégorique, de « problème universel » appartient à la terminologie de Wronski, où il désigne un objet de la loi de création…à creuser plus tard là aussi !
 

La thèse, cruciale à mon avis, de Franck Jedrzejewski, sur la dualité de l’Etre et de l’Un, prend alors selon le cadre de pensée que nous venons de définir, et qui s’appuie sur la « solidité » et la rigueur de la pensée mathématique tout en sortant du champ strictement mathématique, prend alors un sens très simple.

Nous avons défini les trois éléments primordiaux de Wronski : élément-être, élément-savoir et élément neutre comme une adjonction de foncteurs reliant deux « catégories » jouant le rôle de EE (élément-être) et ES (élément-savoir):

EE   ⇄  ES

Mais ceci n’est qu’une définition-projet, ou proposition hypothétique de définition ; nous pourrions aussi retenir tous les foncteurs entre les deux catégories.

La « pensée selon l’Un », par laquelle nous remplaçons, dans un cadre de stricte immanence, l’hénologie et l’Un « ineffable », cela consiste à retenir les foncteurs orientés de EE vers ES.

La « pensée selon l’Etre » cela consiste à inverser le sens des flèches (des foncteurs) et à ne garder que ceux orientés de ES vers EE.

Ces deux « pensées », qui remplacent pour nous les « ineffables » métaphysiques que sont l’Etre et l’Un, sont alors automatiquement duales au sens de la mathématique !

puisque la dualité, c’est quand on inverse le sens des flèches !

rappelons tout de même (deux précautions valent mieux qu’une) que nous sommes là sortis du champ mathématique : nous serions bien en peine de donner une définition mathématique des deux catégories EE et ES !

puisque ce sont là deux « éléments primitifs » au sens de Wronski, de nature transcendantale donc, et qui ne seront jamais « objets », mathématiques ou non…

mais le sens immanent de ces notions est clair :

penser selon l’Etre, c’est s’orienter de ES vers EE, donc « descendre » des niveaux « plus unifiés » vers le niveau (impensable) de la multiplicité dite « pure », ou « inconsistante ».

penser selon l’UN, c’est, au contraire, et en sens inverse (d’où notre vocabulaire mathématique-catégorique) , « monter » des niveaux « bas », pris dans le multiple, vers les niveaux « plus hauts », « supérieurs », plus unifiés.

Expliquer, donner du sens, de l’intelligibilité, c’est toujours résoudre une multiplicité en une unité (provisoire); analyser, c’est aller en sens inverse, résoudre une « unité » (apparente) en ses composantes, pour progresser en connaissances..

les deux mouvements sont nécessaires !

ceci rappelle évidemment l’interprétation que j’avais donnée, en termes disons plus poétiques (ou plutôt prosaïques) de l’Echelle de Jacob :

http://www.blogg.org/blog-30140-billet-suave_mari_magno-1121061.html

http://www.blogg.org/blog-30140-billet-le_second_degre_de_l_echelle_de_jacob___amour_universel-1121364.html

mais je préfère laisser la parole aux vrais poètes, à Lamartine et à cette immense chef d’oeuvre qu’est « La chute d’un ange » :

http://fr.wikisource.org/wiki/La_Chute_d%E2%80%99un_Ange

et à la fin, d’une beauté terrible (15 ème vision) :

A l’immobilité de ce funèbre groupe
Il reconnut la mort ! et, renversant la coupe,
Il regarda couler sa vie avec cette eau,
Comme un désespéré son sang sous le couteau !
Puis, se roulant aux pieds des êtres qu’il adore,
Et frappant de ses poings sa poitrine sonore,
Pour courir autour d’eux bientôt se relevant,
Tel qu’un taureau qui fait de la poussière au vent,
Il ramassait du sable en sa main indignée ;
Et contre un ciel d’airain le lançant à poignée,
Comme l’insulte au front que l’on veut offenser,
Il eût voulu tenir son cœur pour le lancer !

« O terre ! criait-il, ô marâtre de l’homme !
Sois maudite à jamais dans le nom qui te nomme !
Dans tout brin de ton sable, et tout brin de gazon
D’où la vie et l’esprit sortent comme un poison !
Dans la séve de mort qui sous ta peau circule,
Dans l’onde qui t’abreuve et le feu qui te brûle,
Dans l’air empoisonné que tu fais respirer
A l’être, ton jouet, qui naît pour expirer !
Dans ses os, dans sa chair, dans son sang, dans sa fibre,
Où le sens du supplice est le seul sens qui vibre !
Où de tout cœur humain les palpitations
Ne sont de la douleur que les pulsations !
Où l’homme, cet enfant d’outrageante ironie,
Ne mesure son temps que par son agonie !
Où ce souffle animé, qui s’exhale un moment,
Ne se connaît esprit qu’à son gémissement !
Tout être que de toi l’inconnu fait éclore .
Gémit en t’arrivant, en s’en allant t’abhorre !
Nul homme ne se lève un jour de son séant
Que pour frapper du pied et pleurer le néant !
Que maudite à jamais, qu’à jamais effacée,
Soit l’heure lamentable où je t’ai traversée !
Que ta fange m’oublie et ne conserve pas
Une heure seulement la trace de mes pas !
Que le vent, qui te touche à regret de ses ailes,
De nos corps consumés disperse les parcelles !
Que sur ta face, ô terre ! il ne reste de moi
Que l’imprécation que je jette sur toi ! »

Pour unique réponse à son mortel délire,
L’air muet retentit d’un long éclat de rire.
Derrière un monticule il vit de près surgir
Les fronts de cinq géants et du traître Stagyr.
« Meurs, lui crièrent-ils, vile brute aux traits d’ange !
Ta force nous vainquit, mais la fourbe nous venge.
Laissons cette pâture aux chacals des déserts ;
Sa mort nous laisse dieux, et l’homme attend nos fers ! »
Ils dirent ; et tournant le dos, ils disparurent,
Et leurs voix par degrés sur le désert moururent.

Cédar, dont leur mépris fut le dernier adieu,
A cet excès d’horreur se dressa contre Dieu.
Tout l’univers tourna dans sa tête insensée ;
Il n’eut plus qu’une soif, un but, une pensée :
Anéantir son cœur et le jeter au vent.
Comme un gladiateur blessé se relevant,
Il cueillit sur les flancs arides des collines
Une immense moisson de ronces et d’épines
Autour du groupe mort où son pied les roula,
En bûcher circulaire il les accumula ;
Puis, prenant dans ses bras ses enfants et sa femme,
Ces trois morts sur le cœur, il attendit la flamme.

La flamme, en serpentant dans l’énorme foyer
Que le vent du désert fit bientôt ondoyer,
Comme une mer qui monte au naufrage animée,
L’ensevelit vivant sous des flots de fumée.
L’édifice de feu par degrés s’affaissa.
Du ciel sur cette flamme un esprit s’abaissa,
Et d’une aile irritée éparpillant la cendre :
« Va ! descends, cria-t-il, toi qui voulus descendre !
Mesure, esprit tombé, ta chute et ton remord !
Dis le goût de la vie et celui de la mort !
Tu ne remonteras au ciel qui te vit naître
Que par les cent degrés de l’échelle de l’être,
Et chacun en montant te brûlera le pied ;
Et ton crime d’amour ne peut être expié.
Qu’après que cette cendre aux quatre vents semée,
Par le temps réunie et par Dieu ranimée,
Pour faire à ton esprit de nouveaux vêtements
Aura repris ton corps à tous les éléments,
Et, prêtant à ton âme une enveloppe neuve,
Renouvelé neuf fois ta vie et ton épreuve ;
A moins que le pardon, justice de l’amour.
Ne descende vivant dans ce mortel séjour ! »

L’ouragan, à ces mots se levant sur la plaine,
Souffla sur le bûcher de toute son haleine,
Et dispersa la cendre en pâles tourbillons,
Comme un semeur, l’hiver, la semence aux sillons.
L’immobile désert sentit frémir sa poudre,
L’occident se couvrit de menace et de foudre ;
Des nuages pesants, pleins de tonnerre et d’eau,
Posèrent sur les monts comme un sombre fardeau ;
L’homme, le front levé vers la céleste voûte,
Du déluge sentit une première goutte.

 
voici le double mouvement :
Va ! descends, cria-t-il, toi qui voulus descendre !
Mesure, esprit tombé, ta chute et ton remord !
Dis le goût de la vie et celui de la mort !
Tu ne remonteras au ciel qui te vit naître
Que par les cent degrés de l’échelle de l’être,
Et chacun en montant te brûlera le pied ;
 
l’épilogue qui vient juste après, et clôture le livre, a l’apparence et la nature d’une retombée :
« Et le vieillard finit en disant : « Gloire à Dieu !
Dieu, seul commencement, seule fin, seul milieu,
Seule explication du ciel et de la terre,
Seule clef de l’esprit pour ouvrir tout mystère ! »
Il étendit la main pour l’invoquer sur nous !
Nous pliâmes, contrits, nos fronts et nos genoux ;
Comme un homme qui craint de renverser un vase,
Nous sortîmes muets de l’antre de l’extase.
Le navire aux mâts nus, endormi sur les flots,
A l’ombre du Liban berçait nos matelots.
Sous la vergue où le câble avait roulé les voiles,
L’hirondelle du bord en becquetait les toiles.
Le sifflet réveilla le pilote dormant,
Et le vaisseau reprit son sillage écumant »
 
 
 

 

Badiou : ensembles, actuel, topoi, virtuel, ontologie et logique

Dans mon ancien blog je m’étais livré à une violente critique de la pensée politique  de Badiou, je ne le regrette pas mais il vaut mieux entrer dans ce gouffre sans fond par la porte principale : la philosophie mathématique…or je n’avais pas encore à ma disposition les séminaires qui sont ici :

http://www.entretemps.asso.fr/Badiou/seminaire.htm

la plupart disponibles en notes, résumées certes mais très claires selon mes premières impressions.

(re) commençons donc le travail de Sisyphe de l’antibadiousisme primaire à partir du séminaire de 93-94 sur les catégories :

« Factuellement, on peut penser que la théorie des catégories et des topos s’est présentée, tend à se présenter, comme un dispositif global qui serait une alternative à la théorie des ensembles, c’est-à-dire comme une autre manière de fixer le cadre général dans lequel se déploient les concepts de la mathématique, et par conséquent aussi comme une autre méthode d’exposition de la mathématique. Contradiction qui était au départ mon hypothèse.

Selon la méthode consistant à placer la philosophie sous condition de phénomènes de ce genre, de cette situation, la philosophie doit savoir ce qui est en jeu pour elle-même dans cette situation. Lorsque la philosophie se met sous condition de phénomènes scientifiques de ce type, elle ne se met pas sous condition des discours scientifiques, mais sous condition des événements scientifiques.[1]

La thèse que j’ai été amené à soutenir, c’est qu’il ne s’agit pas de deux dispositifs concurrentiels du fondement de la mathématique. Du point de vue du philosophe, il apparaît qu’en réalité, il n’y a pas d’unité de plans entre les deux entreprises : elles ne sont pas deux stratégies pour fonder ou exposer les mathématiques. La visée propre de ces deux entreprises n’a pas la même assignation.

La théorie des ensembles est de l’ordre de la décision ontologique. C’est une véritable prescription décisoire quant à ce qu’est une pensée de l’être-en-tant-qu’être. La vocation immédiate de la théorie des ensembles est de décider un univers mathématique et de faire se mouvoir la pensée mathématique de l’intérieur de cet univers.

La théorie des topos est en réalité une théorie des possibles. C’est une description de possibilité. Son vecteur essentiel est de décrire ce que c’est qu’un univers possible, en retenant les prescriptions d’existence. La métaphore que j’utilise à cet égard est leibnizienne : l’entendement divin est composé de la totalité des univers possibles qui ne lui ek-sistent pas. Et Dieu crée un univers possible qu’il fulgure, selon la norme du meilleur univers possible (celui qui produit le maximum d’effets avec le minimum de causes). Donc, il y a la totalité virtuelle des univers dans l’entendement divin, et un univers qui existe, le meilleur.

On dira que la théorie des topos est la théorie de l’entendement divin, c’est-à-dire des univers possibles, et même de la classification des univers possibles, tandis que la théorie des ensembles est une décision d’univers. Elle en prescrit un, qu’elle crée, qu’elle fulgure.

En continuant la métaphore, on pourrait dire que la théorie des topos est une investigation du concept d’univers, donc une théorie des univers, tandis que la théorie des ensembles est une création d’univers, ce n’est pas une théorie d’univers -on peut même dire qu’elle n’a pas de concept d’univers -, mais une effectuation d’univers.

Ce point donne lieu à une confusion parce qu’il donne lieu à deux débats, en réalité différents, mais souvent confondus :

1) Est-ce que la mathématique est une théorie des possibles, ou est-ce qu’elle est une création d’univers ? Est-elle une investigation formelle des possibles, ou l’investigation d’un univers constitué ?

Vision logique et formaliste d’un côté, vision réaliste et intuitive de l’autre.

2) La théorie des ensembles est-elle le meilleur univers possible, au sens où Leibniz dit que le monde existant est le meilleur possible. Quelle est la proximité de la mathématique et de la logique ?

Dans les controverses, ces deux questions sont souvent mélangées. La thèse dans laquelle nous sommes est la suivante : il n’y a pas d’unité de plans. Elle se donne dans un critère très simple : la théorie des catégories est une pensée définitionnelle ; elle décrit, par définitions, les traits constitutifs de ce que c’est qu’un univers possible. Une définition ne décide rien, c’est un opérateur d’identification, qui ne décide rien quant à l’existence. La théorie des ensembles repose toute entière sur des axiomes qui, eux, décident quant à des existences.

Quels sont, dans une tentative pour penser l’être en tant qu’être, les rapports entre le possible et l’effectif ? Aussi bien le virtuel et l’actuel. C’est une question essentielle de toute l’histoire de la philosophie. Une des caractéristiques de la théorie des ensembles est qu’elle est entièrement dans l’actuel ; il n’y a pas de virtuel en elle.

La théorie platonicienne des Idées est une doctrine de l’actuel. La pensée est sous condition de l’existence en acte des Idées.

Dans le dispositif aristotélicien, ce qui est, la substance, est dans un rapport de la puissance et de l’acte. Il finit par y avoir un acte pur qui est dieu. Mais ce qu’il y a, c’est la réalisation de son acte immanent existant en puissance.

Deleuze est la plus forte pensée contemporaine de l’être comme actualisation. L’essence de l’être est le virtuel et pas l’actuel, pour Deleuze. Le cahot est la virtualité anarchique pure. Donc, tout est actualisation.

Dans ma pensée, il n’y a pas de virtuel. Le possible est lui-même une projection de l’actuel »

ce « factuellement » m’ennuie fortement : la théorie des topoi n’est certes pas une alternative, mais un dépassement, tout autant qu’une perfection de la théorie des ensembles; il n’y a certes plus concurrence entre les deux, et là je préfère m’adresser au « working mathematician » qu’au philosophe !

La théorie des catégories est à la théorie des ensembles dans la même situation, ou relation, que la philosophie idéaliste de Platon relativement au réalisme de la substance  d’Aristote .

« La théorie des ensembles est une création d’univers » : cette proposition délirante illustre bien la différence entre une pensée athée, qui veut se débarrasser de Dieu en attribuant ses « propriétés » les plus irrationnelles (celle de Créateur) à la pensée humaine, et une pensée « religieuse » (celle proposée ici) qui fait simplement descendre la sphère divine jusqu’à la sphère humaine : appelons « évènement » le contact et nous sommes badiousiens !

d’ailleurs il est à remarquer que le « progrès de la pensée » se fait par sauts et discontinuités !

Il est visible, voire évident, que la « pensée » de Badiou n’est pas véritablement scientifique, mais « contrainte » par sa haine implicite contre le christianisme , qui le pousse aussi à donner le change avec son « Saint Paul » (lui aussi « avance masqué » !)  ainsi qu’à prendre fait et cause pour l’islamisme en hurlant avec tous les autres « matons de Panurge » à l’islamophobie (il serait intéressant de savoir ce qu’il pense de Mohammed Merah !).

Cela l’entraîne dans les grosses bourdes comme celle ci :

« La théorie des ensembles est une option ontologique. Cette option ontologique, en dépit du fait qu’elle soit souvent appelée platonicienne, est en réalité une option d’un matérialisme absolu, démocritéen, ou lucrétien, ou épicurien. Quels en sont les traits ?

– L’un n’existe pas. Donc, il n’y a pas de principe, pas de transcendance. Il y a un étalement multiple qui n’est jamais subsumable sous une figure canonique de l’un. Le multiple est toujours multiple de multiples. Donc le il y a pur est simplement dans la forme de la multiplicité. C’est un dispositif radicalement soustrait à l’univers appelé l’onto-théologie par Heidegger, dispositif historial de la métaphysique. »

seulement l’ontologie ne se libèrera jamais du dispositif onto-théologique, théorie des ensembles ou pas, et surtout, l’Un n’est pas un « principe de transcendance » mais d’immanence radicale !

C’est l’ Etre qui est « principe de transcendance » !

la non-philosophie de Laruelle s’expose depuis une pensée de l’immanence de « l’ un-en-tant-qu’un » , mais c’est évidemment Brunschvicg, le « dernier » philosophe français universel, qu’il faut lire pour comprendre la véritable nature du spiritualisme et de l’idéalisme, consistant à remplacer la Transcendance pour l’intériorité et l’immanence de l’esprit.

http://classiques.uqac.ca/classiques/brunschvicg_leon/vraie_et_fausse_conversion/vraie_et_fausse_conversion.html

« Dans la réalité de l’histoire, c’est contre l’éléatisme, et non par lui, que la philosophie rationaliste s’est développée, du jour où la dialectique a mis en évidence l’impossibilité de maintenir simultanément l’affirmation de l’Un en tant qu’être et de l’Un en tant qu’un. En dépit de l’adage, ens et unum non convertuntur. Il est manifeste, en effet, que le, type des « jugements de relation, » : l’Un est un, est orienté à l’inverse exactement du type des « jugements d’existence » : l’Un est. Les deux types de jugement, sous la forme d’absolu où Platon les considère, se détruisent, non pas par leur opposition réciproque seulement, mais aussi chacun pour soi : « L’Être, ajouté à l’Un, comme un prédicat qui lui serait extérieur et transcendant, introduit la dualité, par suite la contradiction, dans ce qui a pour définition essentielle d’être un, tandis que la relation de l’Unité à l’Un maintient l’affirmation de l’Un dans la sphère de l’implicite et de l’immanent, lui interdit comme une altération de son identité radicale avec soi-même toute manifestation au dehors, toute production de ce qui serait autre que le même, fût-ce la perception, la dénomination, la connaissance même. Conclusion qui se confirme par un système curieux d’équivalence entre la position de l’Être de l’Un et la négation de l’Unité de l’Un, entre la position de l’Unité de l’Un et la négation de l’Être de l’Un  »

…Or, si c’est un premier fait que l’impulsion a été donnée au progrès du rationalisme par la réflexion platonicienne quand elle a opposé, au sein même du monisme de Parménide, le réalisme de l’être et l’idéalisme de l’un, il y a un second fait qui lui est parallèle. Quand on considère les doctrines issues du Verbe héraclitéen on s’aperçoit que si elles ont, elles aussi posé sur son terrain véritable ce même problème de l’intelligence humaine, c’est qu’une lutte séculaire s’est engagée, à leur intérieur même, entre la spiritualité pure de la pensée et la matérialité des expressions théologiques ou métaphysiques qui, successivement, l’ont incarnée avec l’illusion de lui conférer une apparence d’être. Dans l’histoire de la philosophie occidentale, rien n’est significatif à cet égard, comme l’exégèse stoïcienne de la mythologie, particulièrement en ce qui concerne la fonction médiatrice d’Hermès dans son double personnage de Verbe intime et de Verbe proféré.  »

seulement Badiou et ses « disciples », comme François Nicolas, quelle que soit leur valeur humaine qui est indéniable, s’enferment délibérément dans une rupture avec le « vieil idéalisme » au moyen d’un matérialisme qui serait enfin le bon , nouvel avatar d’un (pseudo)  messianisme qui rompt enfin les chaînes (religieuses) :
 
« La thèse que je voudrais soutenir est que ce livre très singulier peut aider le musicien à inscrire son propos dans une orientation matérialiste renouvelée de la pensée, plus précisément dans ce que je proposerai ici d’appeler un matérialisme de type nouveau.

I.1.a       Lutte sur deux fronts

Comme on va le voir, ce matérialisme philosophique de type nouveau se constitue et se déploie dans une lutte sur deux fronts : en opposition certes au vieil idéalisme (moribond, en vérité, si ce n’est déjà mort: Badiou soutient cette thèse, dans ses interventions plus récentes. Il faut alors entendre son énoncé « L’idéalisme est mort » au sens de l’énoncé nietzschéen « Dieu est mort » ou de l’énoncé hégélien « l’art est mort » : même s’il en existe toujours des survivances, celles-ci ne sont plus à même d’orienter la pensée de manière créatrice )  mais surtout à un matérialisme (que Badiou appelle « démocratique ») qui est hégémonique et obscurcit aujourd’hui la pensée.

Soit la conviction suivante : les Lumières d’aujourd’hui, celles du XXI° siècle, n’ont plus tant pour adversaire déterminé le vieil idéalisme religieux qu’un obscurantisme de type désormais matérialiste interdisant toute Idée véritable au nom du règne sans partage des corps et des langages. »

sur deux fronts ? diable, je m’inquiète, est ce que cela ne rappelle pas la stratégie hitlérienne, qui s’est terminée de manière catastrophique (pour lui ) ? mais il est vrai que le vieil idéalisme est mort et enterré, alors que Staline en 1943…

« Pourquoi proposer d’inscrire le propos du musicien dans une telle nouvelle orientation matérialiste ?

Parce que l’intellectualité musicale, de longue date (très exactement depuis sa constitution avec Rameau, précisément à l’époque des Lumières) lutte contre son propre obscurantisme, celui du vieil idéalisme qui focalise et oriente le discours traditionnel sur la musique. Cet idéalisme le réalise d’une part en présentant la musique comme esprit immatériel et ineffable, venant transir d’infini notre sol étriqué et notre cœur fermé, et d’autre part en thématisant le discours possible sur une telle musique comme commentaire dévot et prêche célébrant le médiateur musicien, au total en exaltant la puissance religieuse de la musique … Contre cet obscurantisme, venant interdire de parler de musique autrement que comme émotion pieuse et communication ineffable, l’intellectualité musicale a constitué ses propres opérations : théoriques (voir Rameau), critiques (voir Schumann) et esthétiques (voir Wagner). »

comme on le voit ici, l’idéologie anti-chrétienne saute aux yeux : seulement l’idéalisme brunschvicgien aboutissement du cartésien, et mutation du platonicien, sort du christianisme par le haut, à travers un « christianisme de philosophes »…

les séminaires de Badiou sur les topoi et les catégories

J’avais mis sur le blog les textes de ces séminaires sur Scribd, mais cela ralentissait considérablement la lecture du blog, or ils existent aussi ailleurs, voici les liens :

http://www.entretemps.asso.fr/Badiou/93-94.3.htm

seul celui de 94-95 n’est que sur Scribd :

http://www.scribd.com/doc/78652142/Theorie-des-topos-1994-1995

puis :

http://www.entretemps.asso.fr/Badiou/95-96.htm

http://www.entretemps.asso.fr/Badiou/96-97.2.htm

on peut y ajouter cette thèse :

http://nessie-philo.com/Files/these_fj.pdf

et ces articles :

http://repmus.ircam.fr/_media/mamux/ecole-mathematique/yves-andre/ch1topos.pdf

http://smf4.emath.fr/Publications/RevueHistoireMath/8/pdf/smf_rhm_8_113-140.pdf

http://rene.guitart.pagesperso-orange.fr/textespreprints/guitart08modelcat.pdf