Une notion fondamentale : l’adjonction

dans un précédent article:

https://mathesisuniversalis.wordpress.com/2015/06/24/morphismes-geometriques-et-2-categorie-topos-des-topoi-comme-cadre-general-de-nos-travaux/

nous avons vu, à titre d’hypothèse bien sûr, comme c’est le caractère (spéculatif) de tout ce qui est développé ici, que le schéma fondamental de ce que nous appelons μαθεσις uni√ersalis οντοποσοφια pourrait être représenté par ce que l’on appelle un morphisme géométrique entre deux topoi, c’est à dire une paire de foncteurs adjoints entre deux topoi:

U. : E —————-> S

où le topos E , généralement la catégorie Ens des ensembles, jouerait le rôle de ce que Wronski appelle dans sa philosophie élément-être, le topos S correspondrait à l’élément-savoir, le plan de l’idée, et le morphisme à l’élément-neutre qui « unifie » être et savoir.
Nous voyons donc que pour poursuivre, il faut étudier à fond la notion d’adjonction, qui est cruciale en mathématiques et en théorie des catégories.

Or cela demande une compréhension plus que formelle, comme c’est souvent le cas en mathématiques, pour ne pas parler de la « philosophie mathématique » que nous désirons développer ici.

Sur cette page qui permet de poser des questions à la communauté des mathématiciens :

http://mathoverflow.net/questions/6551/what-is-an-intuitive-view-of-adjoints-version-1-category-theory

un « topologiste » qui connaît le sens de la notion de « foncteurs adjoints » se demande comment il pourrait expliquer la notion à respectivement un enfant de 5 ans, le « passager ordinaire du bus de Clapham » ou même à un « undergraduate » …

Il obtient des tas de réponses intéressantes, souvent tirées de liens ou de blogs connus, à part la première qui fait l’analogie avec les problèmes d’approximation la meilleure d’un nombre rationnel ou réel par un entier…quant à savoir si un enfant de 5 ans comprendrait c’est une autre paire de manches.

Quoiqu’il en soit, nous voyons quel est le défi à relever, puisque la compréhension que nous visons dépasse largement celle désirée par ce topologiste.

Mais ici se dresse devant nous un Interdit, édicté par nulle déesse ou dieu, mais par notre simple promesse faite à nous même de ne pas nous contredire, ou, si nous le faisons et nous en aperçevons, au moins de ne pas nous en féliciter et glorifier (comme c’était l’habitude d’Hitler paraît il).

Nous ne prétendons pas que des morphismes géométriques, ou nulle autre construction mathématique, puisse représenter l’UN, et certainement pas non plus le « compte-pour-un » ensembliste de Badiou.

On ne peut et ne doit pas « parler de l’Un » puisque ce serait « prendre l’Un pour objet de notre discours », or l’Un ne peut certainement jamais être objet, même d’un discours.

Ou encore :

« on ne peut parler que de ce dont on parle » (Alexandre Kojève)

ou

« ce dont on ne peut pas parler, il faut le taire » (Wittgenstein)

Et pourtant nous entendons bâtir ici une « cathédrale au soleil » que nous appelons :

« 

HENOSOPHIA TOPOSOPHIA μαθεσις uni√ersalis οντοποσοφια ενοσοφια

 »

en tant que « Voie de l’homme rusé » (sinon de « l’homme aux mille tours πολυτροπος ») qui en quelque sorte transgresserait l’Interdit et parlerait de ce dont on ne peut parler : de l’UN.

https://en.wikisource.org/wiki/Kubla_Khan

« In Xanadu did Kubla Khan
A stately pleasure-dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.
 »

Tâchons d’expliquer pourquoi nous nous disposons à une telle entreprise sans avoir sombré dans la folie (espérons le du moins, et sans « raconter des histoires » à la façon du Bateleur (qui sévit en ce moment à la table des négociations de Bruxelles)

1-bateleur (2)

Einstein s’étonnait (et faisait plus que s’étonner, puisqu’il parlait de cela à propos de la question de Dieu) du fait que l’univers soit intelligible par la physique.

Or l’univers c’est l’élément-être EE de Wronski, la physique c’est l’élément-savoir ES, nous voyons donc que si nous voulons un jour « faire entrer de la lumière intelligible » dans la « sunless sea » (qui est le monde), il nous faudra certainement passer par l’élément-neutre EN « identité de l’être et du savoir » dont nous ne savons pas vraiment si elle est primitive ou finale (messianique).

EN en quoi nous voyons une image de l’UN, sous la forme d’unification et à la fin des Temps d’identification de l’être et du savoir.

« ce jour où tout l’être sera passé en savoir »

Et nous avons expliqué que nous cherchons cette « compréhension » dans un schéma qui est pour nous le point de départ :
un topos E (être) , un topos S (savoir) et un morphisme géométrique (paire de foncteurs adjoints) les reliant : U (un)

Dans le néant de ces formes pures nous espérons trouver ce qui pour nous sera le Tout…

Nous espérons : cela signifie que nous ne proclamons certainement pas « déternir » une compréhension, puisque nous la cherchons….

http://medecinealgerie.actifforum.com/t1089-samuel-taylor-coleridge-kubla-khan

« La Demoiselle au Tympanon
Dans une vision m’apparut :
C’était une fille d’Abyssinie,
Et sur mon Tympanon elle jouait,
En chantant le mont Abora.
Si je pouvais revivre en moi
Sa symphonie et sa chanson,
Je serais ravi en des délices si profondes,
Qu’avec musique grave et longue,
Je bâtirais ce palais dans l’air :
Ce palais de soleil ! ces abîmes de glace !
Et tous ceux qui entendraient les verraient là,
Et tous crieraient : Arrière ! arrière !
Ses yeux étincelants, ses cheveux flottants !
Tissez un cercle autour de lui trois fois ;
Fermez vos yeux frappés d’une terreur sacrée :
Il s’est nourri de miellée ;
Il a bu le lait de Paradis.
 »

3 réflexions au sujet de « Une notion fondamentale : l’adjonction »

  1. Ping : Une notion fondamentale : l’adjonction | Τοποσοφια μαθεσις uni√ersalis οντοποσοφια

  2. Ping : Une notion fondamentale : l’adjonction | Τοποσοφια οντοποσοφια μαθεσις uni√ersalis

Laisser un commentaire

Entrez vos coordonnées ci-dessous ou cliquez sur une icône pour vous connecter:

Logo WordPress.com

Vous commentez à l'aide de votre compte WordPress.com. Déconnexion / Changer )

Image Twitter

Vous commentez à l'aide de votre compte Twitter. Déconnexion / Changer )

Photo Facebook

Vous commentez à l'aide de votre compte Facebook. Déconnexion / Changer )

Photo Google+

Vous commentez à l'aide de votre compte Google+. Déconnexion / Changer )

Connexion à %s